版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第 PAGE16 页 共 NUMPAGES16 页八年级数学微课教案模板 作为一名教职工,就难以避免地要准备教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。快来参考教案是怎么写的吧!下面带来八年级数学微课教案5篇,希望大家喜欢。 八年级数学微课教案篇1 教材分析 本节课的主题:通过一系列的探究活动,引导学生从计算结果中总结出完全平方公式的两种形式: 1、以教材作为出发点,依据数学课程标准,引导学生体会、参与科学探究过程。首先提出等号左边的两个相乘的多项式和等号右边得出的三项有什么关系。通过学生自主、独立的发现问题,对可能的答案做出假设与猜想,并通过多次的检验,得出正确的结论
2、。学生通过收集和处理信息、表达与交流等活动,获得知识、技能、方法、态度特别是创新精神和实践能力等方面的发展。 2、用标准的数学语言得出结论,使学生感受科学的严谨,启迪学习态度和方法。 学情分析 1、在学习本课之前应具备的基本知识和技能: 同类项的定义。 合并同类项法则 多项式乘以多项式法则。 2、学习者对即将学习的内容已经具备的水平: 在学习完全平方公式之前,学生已经能够整理出公式的右边形式。这节课的目的就是让学生从等号的左边形式和右边形式之间的关系,总结出公式的应用方法。 教学目标 (一)教学目标: 1、经历探索完全平方公式的过程,进一步发展符号感和推力能力。 2、会推导完全平方公式,并能运
3、用公式进行简单的计算。 (二)知识与技能:经历从具体情境中抽象出符号的过程,认识有理数、实数、代数式、;掌握必要的运算,(包括估算)技能;探索具体问题中的数量关系和变化规律,并能运用代数式、不等式、函数等进行描述。 (四)解决问题:能结合具体情景发现并提出数学问题;尝试从不同角度寻求解决问题的方法,并能有效地解决问题,尝试评价不同方法之间的差异;通过对解决问题过程的反思,获得解决问题的经验。 (五)情感与态度:敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心;并尊重与理解他人的见解;能从交流中获益。 教学重点和难点 重点:能运用完全平方公式进行简单的计
4、算。 难点:会推导完全平方公式 教学过程 教学过程设计如下: 一、提出问题 引入同学们,前面我们学习了多项式乘多项式法则和合并同类项法则,通过运算下列四个小题,你能总结出结果与多项式中两个单项式的关系吗? (2m+3n)2=_,(-2m-3n)2=_, (2m-3n)2=_,(-2m+3n)2=_。 二、分析问题 1、学生回答分组交流、讨论 (2m+3n)2= 4m2+12mn+9n2,(-2m-3n)2= 4m2+12mn+9n2, (2m-3n)2= 4m2-12mn+9n2, (-2m+3n)2= 4m2-12mn+9n2。 (1)原式的特点。 (2)结果的项数特点。 (3)三项系数的特
5、点(特别是符号的特点)。 (4)三项与原多项式中两个单项式的关系。 2、学生回答总结完全平方公式的语言描述: 两数和的平方,等于它们平方的和,加上它们乘积的两倍; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。 3、学生回答完全平方公式的数学表达式: (a+b)2=a2+2ab+b2; (a-b)2=a2-2ab+b2、 三、运用公式,解决问题 1、口答:(抢答形式,活跃课堂气氛,激发学生的学习积极性) (m+n)2=_, (m-n)2=_, (-m+n)2=_, (-m-n)2=_, (a+3)2=_, (-c+5)2=_, (-7-a)2=_, (0.5-a)2=_. 2、判断: (
6、 ) (a-2b)2= a2-2ab+b2 ( ) (2m+n)2= 2m2+4mn+n2 ( ) (-n-3m)2= n2-6mn+9m2 ( ) (5a+0.2b)2= 25a2+5ab+0.4b2 ( ) (5a-0.2b)2= 5a2-5ab+0.04b2 ( ) (-a-2b)2=(a+2b)2 ( ) (2a-4b)2=(4a-2b)2 ( ) (-5m+n)2=(-n+5m)2 3、一现身手 (x+y)2 =_; (-y-x)2 =_; (2x+3)2 =_; (3a-2)2 =_; (2x+3y)2 =_; (4x-5y)2 =_; (0.5m+n)2 =_; (a-0.6b)
7、2 =_. 四、学生小结 你认为完全平方公式在应用过程中,需要注意那些问题? (1)公式右边共有3项。 (2)两个平方项符号永远为正。 (3)中间项的符号由等号左边的两项符号是否相同决定。 (4)中间项是等号左边两项乘积的2倍。 五、探险之旅 (1)(-3a+2b)2=_ (2)(-7-2m) 2 =_ (3)(-0.5m+2n) 2=_ (4)(3/5a-1/2b) 2=_ (5)(mn+3) 2=_ (6)(a2b-0.2) 2=_ (7)(2xy2-3x2y) 2=_ (8)(2n3-3m3) 2=_ 板书设计 完全平方公式 两数和的平方,等于它们平方的和,加上它们乘积的两倍;(a+b)
8、2=a2+2ab+b2; 两数差的平方,等于它们平方的和,减去它们乘积的两倍。(a-b)2=a2-2ab+b2 八年级数学微课教案篇2 活动一、创设情境 引入:首先我们来看几道练习题(幻灯片) (复习:平行线及三角形全等的知识) 下面我们一起来欣赏一组图片(幻灯片) 学生活动观看后答问题:你看到了哪些图形? (各式各样的图案装点着我们的生活,使我们这个世界变得如此美丽,那么,请你用两个相同的300的三角板,看能拼出哪些图案?) 学生活动小组合作交流,拼出图案的类型。 同学们所拼的图形中,除了有我们学过的三角形,还有很多四边形,今天,我们一起来研究四边形,探索四边形的性质。(幻灯片出示课题) 活
9、动二、合作交流,探求新知 问题(1):为什么我们把(甲)图叫平行四边形,而(乙)图不是平行四边形呢?你怎么知道这些四边形是平行四边形?(拿一模型,幻灯片) 学生活动认真观察、讨论、思考、推理。 鼓励学生交流,并是试着用自己的语言概括出平行四边形的定义。 学生交流,归纳:有两组对边分别平行的四边形叫做平行四边形。 并说明:平行四边形不相邻的两个顶点连成的线段叫它的对角线。 平行四边形用“”表示,如图平行四边形ABCD记作“ABCD”读作:平行四边形ABCD。(幻灯片出示揭示课题) 问题(2):由平行四边形的定义,我们知道平行四边形的两组对边分别平行,平行四边形还有什么特征呢? 学生活动动手操作,
10、小组演示交流。鼓励学生用多种方法探究。 小结平行四边形的性质: 平行四边形的对边相等 平行四边形的对角相等(这里要弄清对角、对边两个名词) 你能演示你的结论是如何得到的吗?(学生演示) 你能证明吗?(幻灯片出示证明题) 学生活动先分析思路尤其是辅助线,请学生上黑板证明。 自己完成性质2的证明。 活动三、运用新知 性质掌握了吗?一起来看一道题目: 尝试练习(幻灯片)例1 学生活动作尝试性解答。 八年级数学微课教案篇3 一、学习目标: 1、会推导两数差的平方公式,会用式子表示及用文字语言叙述; 2、会运用两数差的平方公式进行计算。 二、学习过程: 请同学们快速阅读课本第2728页的内容,并完成下面
11、的练习题: (一)探索 1、计算: (a - b) = 方法一: 方法二: 方法三: 2、两数差的平方用式子表示为_; 用文字语言叙述为_ 。 3、两数差的平方公式结构特征是什么? (二)现学现用 利用两数差的平方公式计算: 1、(3 - a) 2、 (2a -1) 3、(3y-x) 4、(2x 4y) 5、( 3a - ) (三)合作攻关 灵活运用两数差的平方公式计算: 1、(999) 2、( a b c ) 3、(a + 1) -(a-1) (四)达标训练 1、选择:下列各式中,与(a - 2b) 一定相等的是( ) A、a -2ab + 4b B、a -4b C、a +4b D、 a -
12、 4ab +4b 2、填空: (1)9x + + 16y = (4y - 3x ) (2) ( ) = m - 8m + 16 2、计算: ( a - b) ( x -2y ) 3、有一边长为a米的正方形空地,现准备将这块空地四周均留出b米宽修筑围坝,中间修建喷泉水池,你能计算出喷泉水池的面积吗? (四)提升 1、本节课你学到了什么? 2、已知a b = 1,a + b = 25,求ab 的值 八年级数学微课教案篇4 【教学目标】 一、教学知识点 1.命题的组成. 2.命题真假的判断。 二、能力训练要求: 1.使学生能够分清命题的条件和结论,能判断命题的真假 2.通过举例判定一个命题是假命题,
13、使学生学会反面思考问题的方法 三、情感与价值观要求: 1.通过反例说明假命题,使学生认识到任何事情都是正反两方面对立统一 2.帮助学生了解数学发展史,拓展视野,激发学习兴趣 3.通过对原本介绍,使学生感受数学发展史和人类文明价值 【教学重点】准确的找出命题的条件和结论 【教学难点】理解判断一个真命题需要证明 【教学方法】探讨、合作交流 【教具准备】投影片 【教学过程】 一、情景创设、引入新课 师:如果这个星期不下雨,我们就去郊游,这是命题吗?分析这句话,这个周日,我们郊游一定能成行吗?为什么? 新课: (1)观察下列命题,你能发现这些命题有什么共同结构特征?与同伴交流。 1.如果两个三角形的三
14、条边对应相等,那么这两个三角形全等。 2.如果一个四边形的一组对边平行且相等,那么这个四边形是平行四边形。 3.如果一个三角形是等腰三角形,那么这个三角形的两个底角相等。 4.如果一个四边形的对角线相等,那么这个四边形是矩形。 5.如果一个四边形的两条对角线相互垂直,那么这个四边形是菱形。 师:由此可见,每个命题都是由条件和结论两部分组成的,条件是已知的事项,结论是由已知事项推出的事项。一般地,命题都可以写成“如果那么”的形式,其中“如果”引出部分是条件,“那么”引出部分是结论。 二、例题讲解: 例1:师:下列命题的条件是什么?结论是什么? 1.如果两个角相等,那么他们是对顶角; 2.如果ab
15、,bc,那么a=c; 3.两角和其中一角的对边对应相等的两个三角形全等; 4.菱形的四条边都相等; 5.全等三角形的面积相等。 例题教学建议:1:其中(1)、(2)请学生直接回答,(3)、(4)、(5)请学生分成小组交流然后回答。 2:有的命题的描述没有用“如果那么”的形式,在分析时可以扩展成这种形式,以分清条件和结论。 例2:上述命题哪些是正确的,哪些是不正确的?你是怎么知道它是不正确的?与同伴交流。 师:正确的命题叫真命题,不正确的命题叫假命题。要说明一个命题是假命题,通常可以举一个例子,使之具备命题的条件,却不具备命题的结论,即反例。 教学建议:对于反例的要求可以采取启发式层层递进方式给
16、出,即:说明命题错误可以举例综合命题(1)、(2)的两例,两例条件具备例子结论不吻合给出如何举反例要求。 三、思维拓展: 拓展1.师:如何证实一个命题是真命题呢?请同学们分小组交流一下。 教学建议:不急于解决学生怎么证实真命题的问题,可按以下程序设计教学过程 (1)首先给学生介绍欧几里得的原本 (2)引出概念:公理、定理,证明 (3)启发学生,现在如何证实一个命题的正确性 (4)给出本套教材所选用如下6个命题作为公理 (5)等式性质、不等式有关性质,等量代换也看作定理。 拓展2.师:任何公理、定理是命题吗?是真命题吗?为什么? 建议:在学生回答后归纳总结:公理是经过长期实践验证的,不需要再进行
17、推理论证都承认的真命题。定理是经过推理论证的真命题。 练习书p197习题6.31 四、问题式总结 师:经过本节课我们在一起共同探讨交流,你了解了有关命题的哪些知识? 建议:可对学生进行提示性引导,如:命题的构成特点、命题是否都正确、如何判断一个命题是假命题、如何证实一个命题是真命题。 作业:书p197习题6.32、3 板书设计: 定义与命题 课时2 条件 1.命题的结构特征 结论 1.假命题可以举反例 2.命题真假的判别 2.真命题需要证明 学生活动一 探索命题的结构特征 学生观察、分组讨论,得出结论: (1)这五个命题都是用“如果那么”形式叙述的 (2)这五个命题都是由已知得到结论 (3)这
18、五个命题都有条件和结论 学生活动二 探索命题的条件和结论 生:命题1、2如果部分是条件,那么部分是结论;命题3如果两个三角形两角和其中一角对边对应相等是条件,那么这两个三角形全等是结论;命题4如果是菱形是条件,那么四条边相等是结论;命题5如果两三角形全等是条件,那么面积相等是结论。 学生活动三 探索命题的真假如何判断假命题 生:可以举一个例子,说明命题1是不正确的,如图: 已知:AOB,1=2,1,2不是对顶角 生:命题2,若a=10,b=8,c=5,此时ab,bc,但ac 生:由此说明:命题1、2是不正确的 生:命题3、4、5是正确的 学生活动四 探索命题的真假如何证实一个命题是真命题 学生交流: 生:用我们以前学过的观察、实验、验证特例等方法 生:这些方法往往并不可靠 生:能够根据已知道的真命题证实呢? 生:那已经知道的真命题又是如何证实的? 生:那可怎么办呢? 生:可通过证明的方法 学生分小组讨论得出结论 生:命题的结构特征:条件和结论 生:命题有真假之分 生:可以通过举反例的方法判断假命题 生:可通过证明的方法证实真命题 八年级数学微课教案篇5 创设情境 1.什么叫平行四边形?平行四边形有什么性质? 2.将以上的性质定理,分别用命题形式叙述出来。 根据平行四边形的定义,我们
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【2021届备考】2021届全国名校数学试题分类解析汇编(12月第三期):M单元-推理与证明
- 音乐教师培训总结5篇
- 【红对勾】2021-2022学年人教版高中政治必修一习题-第一单元-生活与消费-课时作业6
- 【每日一练】《晨读晚练》英语高三年级上学期第五周参考答案及解析5
- 【全程复习方略】2022届高考数学(文科人教A版)大一轮专项强化训练(五)圆锥曲线的综合问题-
- 2025年七年级统编版语文寒假预习 第01讲 孙权劝学
- 【全程复习方略】2020年高考化学单元评估检测(四)(鲁科版-福建专供)
- 浙江省温州苍南2023-2024学年第二学期期末检测卷 六年级下册科学
- 【全程复习方略】2022届高考数学(文科人教A版)大一轮课时作业:10.3-几何概型-
- 【全程复习方略】2022届高考数学(文科人教A版)大一轮课时作业:2.3-函数的奇偶性与周期性-
- QCT1067.4-2023汽车电线束和电器设备用连接器第4部分:设备连接器(插座)的型式和尺寸
- 2019电子保单业务规范
- 学堂乐歌 说课课件-2023-2024学年高中音乐人音版(2019) 必修 音乐鉴赏
- 幕墙工程材料组织、运输装卸和垂直运输方案
- 灌溉用水循环利用技术
- 泌尿科一科一品汇报课件
- 2024年江西省三校生高职英语高考试卷
- 中国古代文学智慧树知到期末考试答案章节答案2024年广州大学
- 重庆市南岸区2022-2023学年五年级上学期期末语文试卷
- 现浇钢筋混凝土整体式肋梁楼盖结构-课程设计
- 锦纶纤维研究报告-中国锦纶纤维行业竞争格局分析及发展前景研究报告2020-2023年
评论
0/150
提交评论