版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、感悟“数形结合从“方法到“思想的飞跃数学是研究现实世界的空间形式和数量关系的科学数学中的数和形关系非常亲密。在小学数学教学中运用数形结合符合儿童的认知规律我深深地体会到在数学教学中浸透“数形结合的思想将带给学生无穷的力量。“数形结合思想就是使抽象思维和形象思维互相作用实现数量关系与图形性质的互相转化,将抽象的数学关系和直观的图形结合起来研究数学问题。数形结合的方法具有双向性:借助“形的生动和直观性认识“数即以“形为手段,“数为目的;或借助于“数准确和标准地说明“形的属性。此时,“数是手段在新课程理念下。教学中我注重“数形结合思想的浸透使学生的才能得到了很大的提升,也改变着我的教育教学观一、以“
2、形为起点充分利用教材使学生感受“数形结合“形具有形象直观的优势,但也有其粗略、繁琐和不便于表达的优势只有以简洁的数学描绘、形式化的数学模型表达“形的特性才能更好地表达数学抽象化与形式化的魅力。以“形为起点,充分利用教材使学生感受“数形结合在北师大版第九册教材?点阵中的规律?教学时我不断地问自己“利用点阵来研究数的规律其更为深化的价值在哪?在深化分析研究教材的根底上,我认为本节课的教学旨在让学生体会到我们借助点阵可以研究数的规律而这些规律假如仅仅研究数将是很困难的以“形为起点,使学生探究出更多的“数的规律教学设计时,我充分让学生利用自己手中的点阵图认真观察,提出活动要求:(1)独立考虑从不同角度
3、观察正方形点阵。你发现点阵中有哪些不同的排列规律,并在图中表示出来(2)组内交流。说一说你发现的排列规律试着用算式表示出来。学生在图形的帮助下理解图形中点的个数1,4,9,16,25这些有规律的数是完全平方数进而利用图形动手画一画可以发现更重要的规律1从一角向外扩展来看:1=1,4=1+3,9=t+3+5,16=1+3+5+7,25=1+3+5+7+9+1l每一个正方形数都可以写成几个连续奇数的和,奇数的个数与点阵中的行数和列数一样。进而学生们发现了重要的奇数列前n项和公式:1+3+5+7+9+(2n1)-n2斜着看:1=l4=1+2+19=1+2+3+2+116=l+2+3+4+3+2+12
4、5=l+2+3+4+5+4+3+2+l每一个正方形数都可以写成从1开场连续加到点阵中的行数再递减加到1的连加算式进而学生们发现了求和的重要公式:1+2+3+4+(n-I)+n+(n一1)+4+3+2+1=n2看似一节看图找规律的数学课正是因为有了图形激发了学生学习的欲望,锻炼了学生的思维在短短的一节课中学生们总结出了一条又一条的重要公式以“形为起点,学生们尝到了“数形结合带给他们的快乐。二、以“形助“数在直观中理解数学概念、构建数学模型借助图形的直观性将抽象的数学概念和数量关系形象化、简单化,给学生以直观感,让学生从已有的知识经历出发,亲历将实际问题抽象成数学模型为理解数学概念奠定基矗老师通过
5、以“形,助“数突出图的形象思维,促进学生形象思维与抽象思维的有机结合,化繁为简,化难为易让学生用多种感觉器官充分感知,在形成表象的根底上进展想象、联想,到达最终理解数学概念解决数学问题,形成数学思想的目的。案例1在学习了分数的意义和根本性质后我设计了如下的活动。利用方格纸(中学中的坐标系)帮助学生再次认识“方格纸中的分数。小数数学教学中,只有到了学习折线统计图时才出现了坐标系的影子。但方格纸却是学生数学课上常用的学具把方格纸上画出互相垂直的两条数轴,这就是数学家笛卡儿创造的平面直角坐标系了。由于分数是由分子、分母这两个位置上的自然数构成的所以可以用平面上的点表示它。把分数如图4所示:用横轴点表
6、示分母,纵轴上的点表示分2/3可以用过横轴上“3点的纵线与过纵轴“2这一点线的交点A来表示,可以用的B点来表示。5/7、4/9、7/10该样表示呢?学生很快就把分数表示在图中。这样表示分数我们能发现什么呢?假如将0点(也称坐示原点)与这些点分别连接起来,再用一把直尺放在横轴上按逆时针方向将直尺绕原点0渐渐旋转,扫到的第一个分数是1/6,第二个是4/9,然后依次2/3、7/10、5/7、3/4。我们发现通过很费事的通分可以比拟这六个分数的大小,如今我们用直尺逆时针扫过分数的顺序也是比拟分数大小的又一个新方法,分数从小到大排列为1/64/92/37/105/73/4。只把分数画在方格纸上,找到在方
7、格纸中的位置就可以比拟分数的大小了。利用这种方法,学生把2/3、4/6、6/9画在方格纸上学生会发现这些、分数恰好位于同一条直线上,分数的根本性质也就被“画在了方格纸上。将某一个详细的平面图形平均分、涂阴影来表示分数。是从分数的意义角度,而这里实际上是将直线与分数建立了联络(也就是用直线斜率表示分数)。学生从这个角度去认识分数,不仅能初步感受到分数的大小是由分子、分母两个数共同决定的而且可以对坐标系有一个初步的理解对以后的数学学习是非常有益的。学生在我精心设计的课堂上再次体会了数与形的完美结合,学生把分数画到方格纸(坐标系的时候我想他们对分数的理解又有了独特的想法。案例2前不久我听了一节“两位
8、数乘两位数,的评优课。这位老师是把枯燥的计算教学课与图形“点子图联络在一起,数与形的有机结合发散了学生的思维。例题是:同学们站队用“点来表示队列中的学生,14x12或12x14得多少7下面是学生利用手中的点子图想出解决这道计算题的策略(图5)。这个案例教学伊始,老师直接创设点子图的数学活动通过这些活动激活学生的形象思维,透过数学潜在的“形与“数的关系,把抽象的数学语言与直观的图形结合起来,使抽象思维和形象思维相结合。为研究“两位数乘两位数借助直观来理解算理。进而为培养学生的抽象才能打下良好的根底有效地实现原有知识与新知识之间的链接诱发学生探究与学习的欲望,激活学生的思维这说明以“形助“数,能把
9、许多抽象概念和性质、运算化为直观形象。将这些较难的数学问题借助图形,可帮助学生建构数学模型,找到解题的捷径。三、感悟“数形结合思想从“方法到“思想的飞跃通过教学理论我深化地感受到一种数学思想的浸透决不是一朝一夕可以到达的只有在点滴的教学中浸透“数形结合思想使学生逐步学会看数想形、看形想数才能使学生的思维得到飞跃。运用数形结合思想有时能使数量之间的内在联络变得比拟直观成为解决问题的有效方法之一在分析问题的过程中注意把数和形结合起来考察根据问题的详细情形把图形的问题转化为数量关系的问题或者把数量关系的问题转化为图形的问题使复杂问题简单化抽象问题详细化化难为易。(一)在学习完分数加减法后我设计一道题
10、:“一杯牛奶,小明第一次喝了半杯,第二次又喝了剩下的一半就这样每次都喝了上一次剩下的一半问小明喝了五次后一共喝了这杯牛奶的几分之几。学生一般把五次所喝的牛奶加起来列式后通分求得五次共喝一杯牛奶的几分之几。但这并不是最好的解题策略这时有学生敢于创新提出画一个正方形(如图6),并假设这个正方形的面积为单位l。学生从图中直观地得出从第一次开场每喝一次都减少一半所剩的数量依次为最后计算结果为。在这里根据数学问题的条件和结论之间的内在联络充分利用数形结合的思想方法,使数量关系与空间形式巧妙、和谐地结合在一起学生正是在这样的学习过程中,体会“数形结合的思想到达了一次从“方法到“思想的飞跃(二)数轴上找倒数
11、深化对“倒数的认识乘积是l的两个数互为倒数倒数的概念对于学生来说并不难理解从教材的编排上看“倒数的认识是为后面学习分数除法而专门设置的学生对这个概念的理解仅仅停留在对语义理解的层面上形象的解释为分子分母互问颠倒的两个数互为倒数倒数的概念除了为后面学习分数除法做准备外恰当的利用“数形结合的思想使分数与数轴上的点之间有机的联络起来使学生的思维得到飞跃。在?倒数?一课中,我设计了这样几个练习,使学生感悟“数形结合思想。通过找倒数并标在数轴上这一活动由于已经看到了真分数与假分数分别在1的左右两边。学生很快得出了“真分数的倒数都大于1,假分数(不等于1)的倒数小于1的结论有些学生还发现了“分数越大倒数越
12、小的规律(分数大于0)。由于数轴实现了数与形的联姻将数与直线上的点建立了对应关系提醒了数与形的内在的联络数轴使抽象的数有“形可依。在小学数学教学中我们巧用这种带有箭头和刻度的射线(其实就是数轴的正半轴),可以帮助学生感知数的大小与位置的关系“高明的理论不仅是如今用以理解现象的工具而且也是明天用以回忆那个现象的工具。“数形结合作为数学思想方法之一它也是数学学科的“一般原理在数学学习中是至关重要的对于学生“不管他们将来从事什么工作唯有深深地铭记于头脑中的数学的精神、数学的思维方法、研究方法,却随时随地发生作用,使他们受益终生在小学数学教学中学生懂得“数形结合的数学思想方法后对于小学数学知识的理解性
13、记忆是非常有益的四、数与形巧联络小学生可以理解的几个中学数学公式小学课外数学的教学中尤其是巧算的教学中经常会用到平方差、完全平方公式,由于没有学过初中的代数式的相关知识这些公式的掌握学生只能单纯靠记忆。其实假如巧用图形将这些公式与图形结合起来与平面图形的面积计算联络起来这些对于小学生来说非常深奥的公式也是完全可以理解的(一)平方差公式:学生在学习过用字母表示数、用含有字母的算式表示长正方形面积的计算公式之后,学生再看到a2很容易想到它表示边长为a的正方形的面积,而(a+b)(a-b)应该是长(a+h)宽(a-h)的长方形的面积,有这些做根底学生理解起平方差公式应该并不困难。我们把a、b分别想成
14、是一大一小两个正方形的边长那么az、bz应该分别是这两个正方形的面积az_bz就应该是大正方形与小正方形的面积的差也就是上图中的涂色局部我们把灰色局部进展割补之后会发现灰色局部成为一个长方形,而这个长方形的长是(a+b),宽是(ab),面积自然就是(a+b)fa-b1。面积在数学学习中是一个比拟特殊的概念一方面它是描绘平面图形大小的一个数量另一方面在计算面积时又会用到代数的计算方法(在小学阶段主要是乘法),它可以将几何与代数建立起联络就像解析几何一样,真可谓是小学数学学习中的一个多面手,巧用面积的概念,还可以帮助我们理解下面的完全平方公式(二)完全平方公式:理解完全平方公式与平方差公式类似我们把a+b看成是一个大正方形的边长那么这个正方形的面积(a+b)z是由四局部组成的(如图8),两个正方形边长分别是a,b两个全等的长方形。长a、宽b,所以大正方形的面积是a2+2ab+b2学生借助这些图形结合学过的面积公式及字母表示数的知识很容易就能理解和掌握这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 石河子大学《食品工程原理二》2021-2022学年第一学期期末试卷
- 石河子大学《现代人工智能技术》2023-2024学年期末试卷
- 石河子大学《家畜繁殖学》2022-2023学年第一学期期末试卷
- 沈阳理工大学《自动控制理论》2021-2022学年期末试卷
- 沈阳理工大学《建筑模型制作与工艺》2021-2022学年第一学期期末试卷
- 沈阳理工大学《电工与电子技术实验》2023-2024学年期末试卷
- 光伏代理商合同范本
- 沈阳理工大学《环境设计》2021-2022学年第一学期期末试卷
- 海事法院 合同解除 典型案例
- 合同到期的续签申请书
- 质保书模板(2024版)
- 统编版2024年新教材七年级上册道德与法治8.1《认识生命》教案
- 胃癌介入治疗的临床分析与疗效评价课件
- 基于LoRa通信的智能家居系统设计及研究
- 心脏骤停与心源性猝死的急救与护理课件
- 河南省郑州市郑州一八联合国际学校2025届物理九年级第一学期期中考试模拟试题含解析
- 地球物理勘探合同范本
- 超星尔雅学习通《人人学点营销学(中南财经政法大学)》2024章节测试答案
- 营业线施工有关事故案例及分析
- 植物油灶具供货安装合同
- 车辆维修技术服务方案(2篇)
评论
0/150
提交评论