版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、浙江海洋大学毕业论文(设计)外文翻译学院:石化与能源工程学院专业:安全工程班级:A13安工学号:学生姓名指导教师二O年月外文翻译:原文AdvancedMaterialsResearchVol.710(2013)pp41-44Onlineavailablesince2013/Jun/27at HYPERLINK (2013)TransTechPublications,Switzerlanddoi:10.4028/ HYPERLINK /AMR.710.41 /AMR.710.41CorrosionInhibitionofChloroacetic-AcidModifiedImidazolinefo
2、rQ235SteelinH2SO4SolutionZhaoBin1,2,3,aZouLike2,3,b(1.CollegeofMaterialsandChemicalEngineering,SichuanUniversityofScience&Engineering,China;2.MaterialCorrosionandProtectionKeyLaboratoryofSichuanProvince,China;3.InstituteofFunctionalMaterials,SichuanUniversityofScience&Engineering,China),Keywords:qua
3、ternizedimidazoline;corrosioninhibitors;weightlossmeasurement;polarizationcurveAbstract.Anewchloroacetic-acidmodifiedimidazoline(CAMI)wassynthesizedviathequaternizationofimidazolineintermediate,obtainedfromtheamidationandcyclizationreactionsofbenzoicacidanddiethylenetriamine,withchloroacetic-acid.Th
4、eperformanceofthesynthesizedcompoundCAMIascorrosioninhibitorforQ235carbonsteelin5%sulfuricacidsolutionwasinvestigatedbyweightlossmeasurementandpotentiodynamicpolarizationtechnique.TheresultsshowthatCAMIpossessesstronginhibitiveeffectonthecorrosionofQ235carbonsteelinacidmediumandrestrainsthecorrosion
5、withoutchangingthecathodicandanodiccorrosionmechanismasamixed-typeinhibitor.IntroductionEveryyear,heavylossesarecausedbycorrosionofmetalsinnaturalenvironment,industrialproduction,oilandgasexplorationandproduction.Theapplicationofcorrosioninhibitorsisoneofthemosteffectiveandpracticalmethodsforprotect
6、ionmetalagainstcorrosioninvariouskindsofcorrosionmedium,especiallyinacidicmediaforthatacidsolutionsarewidelyusedinindustry,suchasacidpickling,industrialacidcleaning,aciddescalingandoil-wellcleaning.Themajorityofwell-knowninhibitorsareorganiccompoundscontainingnitrogen,sulfurand/oroxygenatoms1-3.Amon
7、gthevariousorganicinhibitorsusedforinhibitingthecorrosionofmetalinacidmedium,nitrogen-basedorganicinhibitors,imidazolinederivativesattractmuchattentionduingtotheirexcellentinhibitionperformance4.However,mostoftheimidazolinederivativesareinsolubleinwaterandneedtobemodifiedtoimprovetheirwatersolubilit
8、yandcorrosioninhibitionperformance.Inthiswork,anewchloroacetic-acidmodifiedimidazoline(CAMI)wassynthesizedanditseffectivenessandelectrochemicalbehavioronthecorrosionofQ235steelwasstudiedbyweightlossmeasurement,potentiodynamicpolarizationtechnique.ExperimentalworkReagentsandapparatus.Allreagentswerea
9、vailablecommerciallyandusedasreceivedwithoutfurtherpurification.Q235steelwasusedinelectrochemicalandweightlossstudies.TestsolutionswerepreparedbyusingARgradesulfuricacidandtwicedeionizedwater.Aqueoussolutionof5%sulfuricacid(massratio)wasusedasthecorrosivemedium.InfrareddatawasrecordedasKBrdiscsonaNi
10、clet6700FT-IRspectrophotometer.ElectrochemicalmeasurementswerecarriedoutonElectrochemicalsynthesistestsystemLK98C(TianjinLanLiKeChemicalElectronicTechnologyCo.,China).Preparationofimidazolineintermediate.Catalystaluminumoxideandwater-carryingagentxylenewereaddedtothemixtureofbenzoicacidanddiethylene
11、triamine(1:1.2moleratio).Thereactionmixturewasstirredundernitrogenprotectionandheatedto140CandkeptatthisAllrightsreserved.Nopartofcontentsofthispapermaybereproducedortransmittedinanyformorbyanymeanswithou1 temperaturefor3hours,thengraduallyheatedupto200Candheldatthistemperatureuntiltherewasnowaterbe
12、ingcarriedoutbyxylene.Thelight-yellowsolidofimidazolineintermediatewasobtainedwhilethexylene,residualbenzoicacidanddiethylenetriaminewerecompletelyremovedbyvacuumdistillation.COOHCyclizationAmidation140C,-2H2O_+2NHCH2CH2NHCHCH2NH2200OC,-2H2OClCH2COOHC-NHCI|:CH2NHCHjCH2NH260C,QuaternizationCl-Scheme1
13、.PreparationofimidazolineintermediateandCAMIPreparationofimidazolinecorrosioninhibitor(CAMI).Themixtureofobtainedimidazolineintermediatesandchloroaceticacid(1:1.3moleratio)wasstirredat60Cfor3hourstogivethequaternizedimidazolineinhibitor(CAMI).Staticweightlosstest.Theweightlosstestswereperformedonthe
14、metallicsamplesofQ235steelsheetwithdimensionsof2.0cmX1.5cmX0.2cm,whichwerewetabradedwithsiliconcarbidepaperfromnumber200to2000grit,washedwithdeionizedwateranddegreasedwithhexaneandrinsedinisopropanolandacetone.Foreachtest,threecleanedanddriedsampleswereimmersedin5%H2SO4(massratio)solutionwithsetting
15、concentrationofinhibitorCAMIatsettingtemperaturefor72h.Themetallicsampleswerethenremovedfromtheaqueoussolution,rinsedthoroughlywithdistilledwater,ethanolandacetone,driedandweightedaccuratelyagain.Theinhibitionefficiency(n,weightlossmeasurements)wasdeterminedaccordingtoEq.1:W一Wn(%)=01-100%(Eq.1)W0whe
16、reW0andWaretheweightlossvaluesinabsenceandpresenceofCAMI,respectively.Electrochemicaltest.Electrochemicalstudies(potentiodynamicpolarization)werecarriedoutbyusingaconventionalthree-electrodecellconsistingofaQ235steelworkingelectrode,asaturatedcalomelelectrode(SCE)asreferenceandaplatinumauxiliary-ele
17、ctrode.Thepotentiodynamicpolarizationcurveswereobtainedbychangingtheelectrodepotentialautomaticallyfrom-200mVto+200mVwithascanrateof0.5mV/stostudytheelectrochemicalbehaviorofCAMIonthecorrosionofQ235steel.Theinhibitionefficiency(n,electrochemicalmeasurements)wasdeterminedaccordingtoEq.2:JI-1n(%)=1-10
18、0%(Eq.2)I0whereI。andIarethecorrosioncurrentdensitiesinabsenceandpresenceofCAMI,respectivelyResultsanddiscussionsInfraredspectroscopy.Thecharacteristicstretchingfrequenciesforv(C=Ninimidazolinering)andv(N一HinNH2)arepeakedat1651cm-1and3277cm-1,respectively.ThemaximaN一Hbending(scissoring)vibrationabsor
19、ptioninprimaryaminegroupislocatedat1595cm-1.Thestretchingvibrationspeakswereseenat3058cm-1foraromaticC一H,at3931and2862forCH2,at1074and1025cm-1forC一N.Themonosubstitutedaromaticringontheimidazolineringisindicatedbytheabsorptionsat703and774cm-1.Theseinfraredabsorptionsillustratetheformationofimidazolin
20、eintermediate.Gravimetricstudy.Fig.1andFig.2showthevariationofnin5%H2SO4calculatedfromweightlossofthemetallicsamples,subjectedtodifferentinhibitorconcentrationsatconstanttemperature(25C)anddifferentimmersiontemperatureswiththesameCAMIconcentration(30mgL-1),44AdvancedTechnologiesandSolutionsinIndustr
21、y90 5807570nob.85ZLVenekvrfe807570no65606560110203040150160ConcentrationofCAMI(mg/L)Fig.1TheinfluenceofCAMIconcentrationsoninhibitorefficiencyAsshowedinFig.1,whentheconcentrationofCAMIislessthan30mgL-1,nincreasesquicklywithanincreasinginCAMIconcentration,whileafurtherincreasecausesnoappreciablechang
22、eininhibitionperformance,whichillustratesthattheCAMIinhibitormoleculesactbyadsorptionmechanismatQ235steel/acidinterface5.Themaximumnis88%whentheCAMIconcentrationis60mgL-1.Toassesstheeffectoftemperatureoncorrosioninhibitiveprocess,weightlosstestswereperformedinthetemperaturerange25-45Cin5%H2SO4contai
23、ning30mgL-1CAMIinhibitor.Theresultshowsthatndecreasedsharplywithincreasingtemperature(seeFig.2),whichisconsistentwiththefactsthatcorrosionrateinacidsolutionsincreasesexponentiallywithtemperatureincreasebecausethehydrogenevolutionoverpotentialdecreases2andthereactionrateofimidazolineringsplittingincr
24、easeswithelevatedtemperatures6.Electrochemicalmeasurement.Theeffectofinhibitorconcentrationonbothanodicandcathodiccurvesofcarbonsteelin5%H2SO4wasstudiedusingpotentiodynamicpolarizationtechniqueatdifferentconcentrationsofCAMIinhibitor(0and300mgL】),theobtainedexperimentalresultsareshowninFig.3.Ascanbe
25、seeninFig.3,theslopesofthecathodicandanodicTafellinesarenotsignificantlyinfluencedbytheinhibitorconcentrationwhichsuggeststhattheCAMImoleculesrestrainsthecorrosionofQ235carbonsteelwithoutchangingthecathodicandanodiccorrosionmechanism7.ThepresenceofinhibitorCAMI(300mgL-1)bringsasignificanteffectonthe
26、current-potentialrelationsforboththecathodicandanodicprocessandthedisplacementincorrosionpotential(30mV)ismuchlessthan85mVAccordingtoFerreiraet.al8andLiet.al.9,whenthedisplacementismorethan85mVcomparingtothatoftheblanksolution,theinhibitorcanbeconsiderasacathodicoranodictype.Alltheaforementionedfact
27、sareclearevidencethattheCAMIisamixed-typeinhibitor.5511111112530354045Temperature(C)Fig.2Theeffectoftemperatureoninhibitionefficiency-L2r目包ZE-L-i-0.-0.1-0.5-h;-:1.3-0.-10r./vFig.3Polarizationcurvesinthepresence(300mgL-l)andabsenceofCAMIinhibitorConclusionsCAMIshowsastronginhibitiveeffectforthecorros
28、ionofQ235steelin5%H2SO4andrestrainsthecorrosionwithoutchangingthecathodicandanodiccorrosionmechanismviachemicaladsorptiononthesurfaceofQ235steel.TheresultsofpotentiodynamicpolarizationtestsindicatethatCAMIisamixed-typeinhibitor.TheinhibitionefficiencyofCAMIdeclinessharplyasthetemperatureincreasesand
29、increasesquicklywithanincreasinginCAMIconcentrationwhentheconcentrationislessthan30mgL-1.AcknowledgmentThisworkissupportedbytheMaterialCorrosionandProtectionKeyLaboratoryofSichuanProvince,China(No.2012CL12and2011CL11).ReferencesD.Wahyuningrum,S.Achmad,Y.MaolanaSyah,et.al.Int.J.Electrochem.Sci.,2008,
30、3,p.154-166.A.Zarrouk,H.Zarrok,R.Salghi,et.al.Int.J.Electrochem.Sci.,2012,7,p.10215-10232.F.Alvarez,C.A.Grillo,P.L.Schilardi,et.al.Appl.Mater.Interfaces,2013,5,p.249-255.4E.Stupnisek-Lisac,A.GazivodaandM.Madzarac.ElectrochimicaActa,2002,47,p.4189-4194.M.A.Migaheda,A.M.A.Raheima,A.M.Attaa,et.al.Mater
31、.Chem.Phys.,2010,121,p.208-214.B.Jiang,J.Zhang,M.Du,et.al.FineChemicalIndustry,2009,26(8),p.760-763.7C.E.KaanandH.Mustafa.Corros.Sci,2006,48(4),p.797-812.E.S.Ferreira,C.Giancomelli,F.C.Giacomelli,et.al.Mater.Chem.Phys.,2004,83,p.129.9W.H.Li,Q.He,C.L.Pei,et.al.J.Appl.Electrochem.,2008,3&p.289.外文翻译:译文
32、AdvancedTechnologiesandSolutionsinIndustry10.4028/ HYPERLINK /AMR.710 /AMR.710CorrosionInhibitionofChloroacetic-AcidModifiedImidazolineforQ235SteelinH2SO4Solution10.4028/ HYPERLINK /AMR.710.41 /AMR.710.41外文翻译 氯乙酸改性的咪唑啉腐蚀抑制在H2S04溶液中的Q235钢ZhaoBin,ZouLike关键词:咪唑啉;腐蚀抑制剂;重量损失测量;极化曲线摘要:通过由苯甲酸和二亚乙基三胺的酰胺化和环化
33、反应获得的咪唑啉中间体与氯乙酸的季铵化合成新的氯乙酸改性的咪唑啉(CAMI)。通过重量损失测量和电位动力学极化技术研究了合成化合物CAMI作为Q235碳钢在5%硫酸溶液中的缓蚀剂的性能。结果表明,CAMI对Q235碳钢在酸性介质中的腐蚀具有很强的抑制作用,抑制腐蚀,不改变作为混合型抑制剂的阴极和阳极腐蚀机理。介绍每年,由于自然环境中的金属腐蚀,工业生产,石油和天然气的勘探和生产,造成了严重的损失。腐蚀抑制剂的应用是在各种腐蚀介质中,特别是在酸性介质中保护金属免受腐蚀的最有效和实用的方法之一,酸性溶液广泛用于工业中,例如酸洗,工业酸清洗,酸除垢和油井清洁。大多数众所周知的抑制剂是含有氮,硫和/或
34、氧原子的有机化合物1-3。在用于抑制酸性介质中金属腐蚀的各种有机抑制剂中,氮基有机抑制剂,咪唑啉衍生物由于其优异的抑制性能而备受关注4。然而,大多数咪唑啉衍生物不溶于水,需要改性以提高它们的水溶性和腐蚀抑制性能。在这项工作中,合成新的氯乙酸修饰咪唑啉(CAMI),其有效性和电化学行为对Q235钢的腐蚀通过重量损失测量,电位动力学极化技术研究。实验工作试剂和仪器所有试剂均可商购,并且直接使用而无需进一步纯化。Q235钢用于电化学和重量损失研究。通过使用AR级硫酸和两次去离子水制备测试溶液。使用5%硫酸水溶液(质量比)作为腐蚀介质。红外数据作为KBr圆盘在Niclet6700FT-IR分光光度计上
35、记录。电化学测量在电化学合成测试系统LK98C(天津LanLiKe化学电子科技有限公司)上进行。咪唑啉中间体的制备将催化剂氧化铝和载水剂二甲苯加入到苯甲酸和二亚乙基三胺(1:1.2摩尔比)的混合物中。将反应混合物在氮保护下搅拌并加热至140C并保持在此温度。+2NH;UH;CH;NHCH;HH;Amidttioii140fC,-2H,0严0弋严G-NHCH.CHjHHUH2CH.NHj方案1.咪唑啉中间体和CAMI的制备咪唑啉缓蚀剂(CAMI)的制备。将获得的咪唑啉中间体和氯乙酸(1:1.3摩尔比)的混合物在60C下搅拌3小时,得到季铵化咪唑啉抑制剂(CAMI)。静态重量损失试验。对尺寸为2.
36、0cmX1.5cmX0.2cm的Q235钢板的金属样品进行重量损失测试,所述Q235钢板用200至2000号粒度的碳化硅纸进行湿法研磨,用去离子水洗涤并用己烷脱脂,在异丙醇和丙酮中漂洗。对于每个测试,将三个清洁和干燥的样品浸入5%H2SO4(质量比)溶液中,将抑制剂CAMI的凝固浓度设定在设定温度下72小时。然后从水溶液中取出金属样品,用蒸馏水,乙醇和丙酮彻底冲洗,干燥并再次精确称重。根据等式1确定抑制效率(n,重量损失测量):W一W(Eq.1)n(%)=01*100%Wo其中W和W分别是在缺乏和存在CAMI的情况下的重量损失值。01电化学试验。通过使用由Q235钢工作电极,饱和甘汞电极(SC
37、E)作为参考和铂辅助电极组成的常规三电极电池进行电化学研究(电位动力学极化)。通过以0.5mV/s的扫描速率自动将电极电位从-200mV改变为+200mV来获得电位动力学极化曲线,以研究CAMI对Q235钢的腐蚀的电化学行为。根据等式1确定抑制效率(n,电化学测量):I一I(Eq.2)n(%)二_0_1*ioo%Io其中I和I分别是在缺乏和存在CAMI的情况下的腐蚀电流密度。01结果和讨论红外光谱。v(咪唑啉环中的。=N)和v(NH2中的N-H)的特征拉伸频率分别在1651cm-1和3277cm-1处达到峰值。伯胺基中的最大N-H弯曲(剪切)振动吸收位于1595cm-1。在3058cm-1处芳
38、香族C-H,在3931和2862处对于CH2,在1074和1025cm-1处对于C-N观察到拉伸振动峰。咪唑啉环上的单取代芳环由703和774cm-1处的吸收指示。这些红外吸收说明了咪唑啉中间体的形成。外文翻译 重量研究。图1和图2显示了在5%HSO中的n的变化,根据金属样品的重量损24失计算,在恒温(25C)和不同浸渍温度下,使用相同的CAMI浓度(30mgL-1)。(55-60-1J03040SO60ConcentratinfCXuil(mg/L)图1CAMI浓度对抑制剂效率的影响如图1所示,当CAMI的浓度小于30mgL-1)时,n随着CAMI浓度的增加而迅速增加,而进一步的增加不会引起抑制性能的明显变化,这说明CAMI抑制剂分子通过吸附机制起作用在Q235钢/酸界面5。当CAMI浓度为60mgL-1时,最大n88%。为了评估温度对腐蚀抑制过程的影响,在25-45C的温度范围内在含有30mgL-1CAMI抑制剂的5%H2SO4中进行重量损失测试。结果表明,n随温度升高而急剧下降(见图2),这与酸溶液中腐蚀速率随温度升高呈指数增长的事实一致,因为氢气析出超电势降低2和咪唑啉环的反应速率分裂随着温度升高而增加6。电化学测量。在不同浓度的CAMI抑制剂(0和300mgL-1)下,使用电位动力学极化技术研究了抑制剂浓度对碳钢在5%H2SO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《奥美基础训练营》课件
- 协助老人导尿护理
- 2024年山东省滨州市中考化学真题【附答案】
- 一建法规培训
- 复杂性先天性心脏病
- 《周获利能力分析》课件
- 数学学案:课堂导学空间向量的线性运算
- 产假返岗培训
- 智慧树知到《研究生学术规范与医学伦理(浙江中医药大学)》章节测试答案
- 安全行车知识培训
- ICU脓毒血症护理查房
- 2023-2024学年安徽省天长市小学数学五年级下册期末自测考试题
- 2023年象山县特殊教育岗位教师招聘考试笔试模拟试题及答案解析
- GB/T 28222-2011服务标准编写通则
- GB/T 20671.7-2006非金属垫片材料分类体系及试验方法第7部分:非金属垫片材料拉伸强度试验方法
- GB/T 14337-1993合成短纤维断裂强力及断裂伸长试验方法
- GB/T 10001.4-2021公共信息图形符号第4部分:运动健身符号
- 南京市芳草园小学苏教版五年级数学上册《列举法解决问题的策略》活动单(区级公开课定稿)
- 修剪指甲培智五年级上册生活适应教案
- 计算机信息系统灾难恢复计划(完整版)资料
- 脚手架搭设及基本知识教程课件
评论
0/150
提交评论