2021-2022学年湖南省周南石燕湖中考数学仿真试卷含解析及点睛_第1页
2021-2022学年湖南省周南石燕湖中考数学仿真试卷含解析及点睛_第2页
2021-2022学年湖南省周南石燕湖中考数学仿真试卷含解析及点睛_第3页
2021-2022学年湖南省周南石燕湖中考数学仿真试卷含解析及点睛_第4页
2021-2022学年湖南省周南石燕湖中考数学仿真试卷含解析及点睛_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打( )A6折B7折C8折D9折2化简的结果是( )ABCD2(x1)3已知一个等腰三角形的两边长分别是

2、2和4,则该等腰三角形的周长为( )A8或10B8C10D6或124如图,在55的方格纸中将图中的图形N平移到如图所示的位置,那么下列平移正确的是( )A先向下移动1格,再向左移动1格B先向下移动1格,再向左移动2格C先向下移动2格,再向左移动1格D先向下移动2格,再向左移动2格5如果一元二次方程2x2+3x+m=0有两个相等的实数根,那么实数m的取值为()AmBmCm=Dm=6用配方法解方程时,可将方程变形为( )ABCD7在ABC中,C90,那么B的度数为( )A60B45C30D30或608已知二次函数(m为常数)的图象与x轴的一个交点为(1,0),则关于x的一元二次方程的两实数根是Ax

3、11,x21Bx11,x22Cx11,x20Dx11,x239舌尖上的浪费让人触目惊心,据统计中国每年浪费的食物总量折合粮食约499.5亿千克,这个数用科学记数法应表示为()A4.9951011B49.951010C0.49951011D4.995101010下列命题是真命题的是( )A如实数a,b满足a2b2,则abB若实数a,b满足a0,b0,则ab0C“购买1张彩票就中奖”是不可能事件D三角形的三个内角中最多有一个钝角二、填空题(共7小题,每小题3分,满分21分)11如果,那么的结果是_.12如果将“概率”的英文单词 probability中的11个字母分别写在11张相同的卡片上,字面朝

4、下随意放在桌子上,任取一张,那么取到字母b的概率是_13如图,菱形ABCD的边长为15,sinBAC=35,则对角线AC的长为_.14如图,与中,AD的长为_.15如图,在44正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是_16一个布袋中装有1个蓝色球和2个红色球,这些球除颜色外其余都相同,随机摸出一个球后放回摇匀,再随机摸出一个球,则两次摸出的球都是红球的概率是_17不等式组的解集为,则的取值范围为_三、解答题(共7小题,满分69分)18(10分)定义:若某抛物线上有两点A、B关于原点对称,则称该抛物线为

5、“完美抛物线”已知二次函数y=ax2-2mx+c(a,m,c均为常数且ac0)是“完美抛物线”:(1)试判断ac的符号;(2)若c=-1,该二次函数图象与y轴交于点C,且SABC=1求a的值;当该二次函数图象与端点为M(-1,1)、N(3,4)的线段有且只有一个交点时,求m的取值范围19(5分)如图,点C在线段AB上,ADEB,ACBE,ADBC,CF平分DCE求证:CFDE于点F20(8分)图中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,ABC的顶点均在格点上(1)画出将ABC绕点B按逆时针方向旋转90后所得到的A1BC1;(2)画出将ABC向右平移6个单位后得到的

6、A2B2C2;(3)在(1)中,求在旋转过程中ABC扫过的面积21(10分)(1)计算:;(2)先化简,再求值:,其中a=22(10分)如图,已知二次函数与x轴交于A、B两点,A在B左侧,点C是点A下方,且ACx轴.(1)已知A(3,0),B(1,0),AC=OA求抛物线解析式和直线OC的解析式;点P从O出发,以每秒2个单位的速度沿x轴负半轴方向运动,Q从O出发,以每秒个单位的速度沿OC方向运动,运动时间为t.直线PQ与抛物线的一个交点记为M,当2PM=QM时,求t的值(直接写出结果,不需要写过程)(2)过C作直线EF与抛物线交于E、F两点(E、F在x轴下方),过E作EGx轴于G,连CG,BF

7、,求证:CGBF23(12分)某汽车专卖店销售A,B两种型号的汽车上周销售额为96万元:本周销售额为62万元,销售情况如下表:A型汽车B型汽车上周13本周21(1)求每辆A型车和B型车的售价各为多少元(2)甲公司拟向该店购买A,B两种型号的汽车共6辆,购车费不少于130万元,且不超过140万元,则有哪几种购车方案?哪种购车方案花费金额最少?24(14分)已知:如图,在平行四边形中,的平分线交于点,过点作的垂线交于点,交延长线于点,连接,.求证:; 若, 求的长.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、B【解析】设可打x折,则有1200-8008005%,解得x1

8、即最多打1折故选B【点睛】本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以2解答本题的关键是读懂题意,求出打折之后的利润,根据利润率不低于5%,列不等式求解2、A【解析】原式利用除法法则变形,约分即可得到结果【详解】原式=(x1)=故选A【点睛】本题考查了分式的乘除法,熟练掌握运算法则是解答本题的关键3、C【解析】试题分析:4是腰长时,三角形的三边分别为4、4、4,4+4=4,不能组成三角形,4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,综上所述,它的周长是4故选C考点:4等腰三角形的性质;4三角形三边关系;4分类讨论4、C【解

9、析】根据题意,结合图形,由平移的概念求解.【详解】由方格可知,在55方格纸中将图中的图形N平移后的位置如图所示,那么下面平移中正确的是:先向下移动2格,再向左移动1格,故选C【点睛】本题考查平移的基本概念及平移规律,是比较简单的几何图形变换.关键是要观察比较平移前后物体的位置.5、C【解析】试题解析:一元二次方程2x2+3x+m=0有两个相等的实数根,=32-42m=9-8m=0,解得:m=故选C6、D【解析】配方法一般步骤:将常数项移到等号右侧,左右两边同时加一次项系数一半的平方,配方即可.【详解】解:故选D.【点睛】本题考查了配方法解方程的步骤,属于简单题,熟悉步骤是解题关键.7、C【解析

10、】根据特殊角的三角函数值可知A=60,再根据直角三角形中两锐角互余求出B的值即可.【详解】解:,A=60.C90,B=90-60=30.点睛:本题考查了特殊角的三角函数值和直角三角形中两锐角互余的性质,熟记特殊角的三角函数值是解答本题的突破点.8、B【解析】试题分析:二次函数(m为常数)的图象与x轴的一个交点为(1,0),故选B9、D【解析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是非负数;当原数的绝对值1时,n是负数【详解】将499.5亿用科学记数法表示为:4.9

11、951故选D【点睛】此题考查了科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值以及n的值10、D【解析】A. 两个数的平方相等,这两个数不一定相等,有正负之分即可判断B. 同号相乘为正,异号相乘为负,即可判断C. “购买1张彩票就中奖”是随机事件即可判断D. 根据三角形内角和为180度,三个角中不可能有两个以上钝角即可判断【详解】如实数a,b满足a2b2,则ab,A是假命题;数a,b满足a0,b0,则ab0,B是假命题;若实“购买1张彩票就中奖”是随机事件,C是假命题;三角形的三个内角中最多有一个钝角,D是真命题;故选:D【点睛】

12、本题考查了命题与定理,根据实际判断是解题的关键二、填空题(共7小题,每小题3分,满分21分)11、1【解析】令k,则a=2k,b=3k,代入到原式化简的结果计算即可【详解】令k,则a=2k,b=3k,原式=1故答案为:1【点睛】本题考查了约分,解题的关键是掌握约分的定义:约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分12、【解析】分析:让英文单词probability中字母b的个数除以字母的总个数即为所求的概率详解:英文单词probability中,一共有11个字母,其中字母b有2个,任取一张,那么取到字母b的概率为 故答案为点睛:本题考查了概率公式,用到的知识点为

13、:概率等于所求情况数与总情况数之比13、24【解析】试题分析:因为四边形ABCD是菱形,根据菱形的性质可知,BD与AC互相垂直且平分,因为sinBAC=35,AB=10,所以12BD=6,根据勾股定理可求的12AC=8,即AC=16;考点:三角函数、菱形的性质及勾股定理;14、【解析】先证明ABCADB,然后根据相似三角形的判定与性质列式求解即可.【详解】,ABCADB,, , AD=.故答案为:.【点睛】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形灵活运

14、用相似三角形的性质进行几何计算15、【解析】如图,有5种不同取法;故概率为 .16、【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求出答案.【详解】画树状图得:共有9种等可能的结果,两次摸出的球都是红球的由4种情况,两次摸出的球都是红球的概率是,故答案为.【点睛】本题主要考查了求随机事件概率的方法,解本题的要点在于根据题意画出树状图,从而求出答案.17、k1【解析】解不等式2x+96x+1可得x2,解不等式x-k1,可得xk+1,由于x2,可知k+12,解得k1.故答案为k1.三、解答题(共7小题,满分69分)18、 (1) a

15、c3;(3)a=1;m或m【解析】(1)设A(p,q)则B(-p,-q),把A、B坐标代入解析式可得方程组即可得到结论;(3)由c=-1,得到p3,a3,且C(3,-1),求得p,根据三角形的面积公式列方程即可得到结果;由可知:抛物线解析式为y=x3-3mx-1,根据M(-1,1)、N(3,4)得到这些MN的解析式yx+(-1x3),联立方程组得到x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,根据题意得到()若-1x13且x33,()若x1-1且-1x33:列方程组即可得到结论【详解】(1)设A(p,q)则

16、B(-p,-q),把A、B坐标代入解析式可得:,3ap3+3c=3即p3,3,ac3,3,ac3;(3)c=-1,p3,a3,且C(3,-1),p,SABC=31=1,a=1;由可知:抛物线解析式为y=x3-3mx-1,M(-1,1)、N(3,4)MN:yx+(-1x3),依题,只需联立在-1x3内只有一个解即可,x3-3mx-1=x+,故问题转化为:方程x3-(3m+)x-=3在-1x3内只有一个解,建立新的二次函数:y=x3-(3m+)x-,=(3m+)3+113且c=-3,抛物线yx3(3m+)x与x轴有两个交点,且交y轴于负半轴不妨设方程x3(3m+)x3的两根分别为x1,x3(x1x

17、3)则x1+x33m+,x1x3方程x3(3m+)x3在-1x3内只有一个解故分两种情况讨论:()若-1x13且x33:则即:,可得:m()若x1-1且-1x33:则即:,可得:m,综上所述,m或m【点睛】本题考查了待定系数法求二次函数的解析式,一元二次方程根与系数的关系,三角形面积公式,正确的理解题意是解题的关键19、证明见解析【解析】根据平行线性质得出A=B,根据SAS证ACDBEC,推出DC=CE,根据等腰三角形的三线合一定理推出即可【详解】ADBE,AB在ACD和BEC中,ACDBEC(SAS),DCCE CF平分DCE,CFDE(三线合一)【点睛】本题考查了全等三角形的性质和判定,平

18、行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE,主要考查了学生运用定理进行推理的能力20、(1)(1)如图所示见解析;(3)4+1【解析】(1)根据旋转的性质得出对应点位置,即可画出图形;(1)利用平移的性质得出对应点位置,进而得出图形;(3)根据ABC扫过的面积等于扇形BCC1的面积与A1BC1的面积和,列式进行计算即可【详解】(1)如图所示,A1BC1即为所求;(1)如图所示,A1B1C1即为所求;(3)由题可得,ABC扫过的面积=4+1【点睛】考查了利用旋转变换依据平移变换作图,熟练掌握网格结构,准确找出对应点位置作出图形是解题的关键求扫过的面积的主要思路是将不规则图形面积转

19、化为规则图形的面积21、(1)2016;(2)a(a2),【解析】试题分析:(1)分别根据0指数幂及负整数指数幂的计算法则、特殊角的三角函数值、绝对值的性质及数的开方法则计算出各数,再根据实数混合运算的法则进行计算即可;(2)先算括号里面的,再算除法,最后把a的值代入进行计算即可试题解析:(1)原式=2016;(2)原式=a(a2),当a=时,原式=22、 (1)y=x24x3;y=x;t= 或;(2)证明见解析.【解析】(1)把A(3,0),B(1,0)代入二次函数解析式即可求出;由AC=OA知C点坐标为(-3,-3),故可求出直线OC的解析式;由题意得OP=2t,P(2t,0),过Q作QH

20、x轴于H,得OH=HQ=t,可得Q(t,t),直线 PQ为yx2t,过M作MGx轴于G,由,则2PGGH,由,得, 于是,解得,从而求出M(3t,t)或M(),再分情况计算即可; (2) 过F作FHx轴于H,想办法证得tanCAG=tanFBH,即CAG=FBH,即得证.【详解】解:(1)把A(3,0),B(1,0)代入二次函数解析式得解得y=x24x3;由AC=OA知C点坐标为(-3,-3),直线OC的解析式y=x;OP=2t,P(2t,0),过Q作QHx轴于H,QO=,OH=HQ=t, Q(t,t),PQ:yx2t,过M作MGx轴于G,,2PGGH,即, , M(3t,t)或M()当M(3t,t)时:,当M()时:,综上:或(2)设A(m,0)、B(n,0),m

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论