2021-2022学年浙江省杭州市滨江区毕业升学考试模拟卷数学卷含解析及点睛_第1页
2021-2022学年浙江省杭州市滨江区毕业升学考试模拟卷数学卷含解析及点睛_第2页
2021-2022学年浙江省杭州市滨江区毕业升学考试模拟卷数学卷含解析及点睛_第3页
2021-2022学年浙江省杭州市滨江区毕业升学考试模拟卷数学卷含解析及点睛_第4页
2021-2022学年浙江省杭州市滨江区毕业升学考试模拟卷数学卷含解析及点睛_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1下面调查中,适合采用全面调查的是()A对南宁市市民进行“南宁地铁1号线线路”B对你安宁市食品安全合格情况的调查C对南宁市电视台新闻在线收视率的调查D对你所在的班级同学的身

2、高情况的调查2如图,四边形ABCD中,AC垂直平分BD,垂足为E,下列结论不一定成立的是( )AAB=ADBAC平分BCDCAB=BDDBECDEC3下列图形中是轴对称图形但不是中心对称图形的是()ABCD4我国古代数学著作孙子算经中有“多人共车”问题:今有三人共车,二车空;二人共车,九人步问人与车各几何?其大意是:每车坐3人,两车空出来;每车坐2人,多出9人无车坐. 问人数和车数各多少?设车辆,根据题意,可列出的方程是 ( )ABCD5如图,为等边三角形,要在外部取一点,使得和全等,下面是两名同学做法:( )甲:作的角平分线;以为圆心,长为半径画弧,交于点,点即为所求;乙:过点作平行于的直线

3、;过点作平行于的直线,交于点,点即为所求A两人都正确B两人都错误C甲正确,乙错误D甲错误,乙正确6下列四个不等式组中,解集在数轴上表示如图所示的是()ABCD7某校九年级一班全体学生2017年中招理化生实验操作考试的成绩统计如下表,根据表中的信息判断,下列结论中错误的是( )成绩(分)3029282618人数(人)324211A该班共有40名学生B该班学生这次考试成绩的平均数为29.4分C该班学生这次考试成绩的众数为30分D该班学生这次考试成绩的中位数为28分8若代数式,则M与N的大小关系是( )ABCD9如图,在射线OA,OB上分别截取OA1=OB1,连接A1B1,在B1A1,B1B上分别截

4、取B1A2=B1B2,连接A2B2,按此规律作下去,若A1B1O=,则A10B10O=()ABCD10如图,正方形ABCD中,对角线AC、BD交于点O,BAC的平分线交BD于E,交BC于F,BHAF于H,交AC于G,交CD于P,连接GE、GF,以下结论:OAEOBG;四边形BEGF是菱形;BECG;1;SPBC:SAFC1:2,其中正确的有()个A2B3C4D511如图,一次函数y1x与二次函数y2ax2bxc图象相交于P、Q两点,则函数yax2(b1)xc的图象可能是( )ABCD12如图,ABC是ABC以点O为位似中心经过位似变换得到的,若ABC的面积与ABC的面积比是4:9,则OB:OB

5、为()A2:3B3:2C4:5D4:9二、填空题:(本大题共6个小题,每小题4分,共24分)13将一些形状相同的小五角星如图所示的规律摆放,据此规律,第10个图形有_个五角星.14关于的分式方程的解为正数,则的取值范围是_15已知关于x的一元二次方程mx2+5x+m22m=0有一个根为0,则m=_16如图,BC6,点A为平面上一动点,且BAC60,点O为ABC的外心,分别以AB、AC为腰向形外作等腰直角三角形ABD与ACE,连接BE、CD交于点P,则OP的最小值是_17分解因式:4ax2-ay2=_.18若点与点关于原点对称,则_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证

6、明过程或演算步骤19(6分)先化简,再求值:(),其中20(6分)为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元今年年初,“共享单车”试点投放在某市中心城区正式启动投放A,B两种款型的单车共100辆,总价值36800元试问本次试点投放的A型车与B型车各多少辆?试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?21(6分)如图,

7、在中,的垂直平分线交于,交于,射线上,并且()求证:;()当的大小满足什么条件时,四边形是菱形?请回答并证明你的结论22(8分)在甲、乙两个不透明的布袋里,都装有3个大小、材质完全相同的小球,其中甲袋中的小球上分别标有数字1,1,2;乙袋中的小球上分别标有数字1,2,1现从甲袋中任意摸出一个小球,记其标有的数字为x,再从乙袋中任意摸出一个小球,记其标有的数字为y,以此确定点M的坐标(x,y)请你用画树状图或列表的方法,写出点M所有可能的坐标;求点M(x,y)在函数y=2x的图象上的概率23(8分)如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物

8、线三角形”(1)“抛物线三角形”一定是 三角形;(2)若抛物线的“抛物线三角形”是等腰直角三角形,求的值;(3)如图,是抛物线的“抛物线三角形”,是否存在以原点为对称中心的矩形?若存在,求出过三点的抛物线的表达式;若不存在,说明理由24(10分)如图,抛物线y=(x1)2+c与x轴交于A,B(A,B分别在y轴的左右两侧)两点,与y轴的正半轴交于点C,顶点为D,已知A(1,0)(1)求点B,C的坐标;(2)判断CDB的形状并说明理由;(3)将COB沿x轴向右平移t个单位长度(0t3)得到QPEQPE与CDB重叠部分(如图中阴影部分)面积为S,求S与t的函数关系式,并写出自变量t的取值范围25(1

9、0分)某中学举行室内健身操比赛,为奖励优胜班级,购买了一些篮球和足球,篮球单价是足球单价的1.5倍,购买篮球用了2250元,购买足球用了2400元,购买的篮球比足球少15个,求篮球、足球的单价26(12分)如图所示,在ABC中,BO、CO是角平分线ABC50,ACB60,求BOC的度数,并说明理由题(1)中,如将“ABC50,ACB60”改为“A70”,求BOC的度数若An,求BOC的度数27(12分)如图,ACB与ECD都是等腰直角三角形,ACB=ECD=90,点D为AB边上的一点,(1)求证:ACEBCD;(2)若DE=13,BD=12,求线段AB的长参考答案一、选择题(本大题共12个小题

10、,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1、D【解析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】A、对南宁市市民进行“南宁地铁1号线线路”适宜采用抽样调查方式;B、对你安宁市食品安全合格情况的调查适宜采用抽样调查方式;C、对南宁市电视台新闻在线收视率的调查适宜采用抽样调查方式;D、对你所在的班级同学的身高情况的调查适宜采用普查方式;故选D【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值

11、不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查2、C【解析】解:AC垂直平分BD,AB=AD,BC=CD,AC平分BCD,平分BCD,BE=DEBCE=DCE在RtBCE和RtDCE中,BE=DE,BC=DC,RtBCERtDCE(HL)选项ABD都一定成立故选C3、C【解析】分析:根据轴对称图形与中心对称图形的概念求解详解:A、不是轴对称图形,也不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项正确;D、不是轴对称图形,也不是中心对称图形,故此选项错误故选:C点睛:本题考查了中心对称图形与轴

12、对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合4、B【解析】根据题意,表示出两种方式的总人数,然后根据人数不变列方程即可.【详解】根据题意可得:每车坐3人,两车空出来,可得人数为3(x-2)人;每车坐2人,多出9人无车坐,可得人数为(2x+9)人,所以所列方程为:3(x-2)=2x+9.故选B.【点睛】此题主要考查了一元一次方程的应用,关键是找到问题中的等量关系:总人数不变,列出相应的方程即可.5、A【解析】根据题意先画出相应的图形,然后进行推理论证即可得出结论【详解】甲的作法如图一:为等边三角形,AD是的角

13、平分线 由甲的作法可知, 在和中, 故甲的作法正确;乙的作法如图二: 在和中, 故乙的作法正确;故选:A【点睛】本题主要借助尺规作图考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键6、D【解析】此题涉及的知识点是不等式组的表示方法,根据规律可得答案【详解】由解集在数轴上的表示可知,该不等式组为,故选D【点睛】本题重点考查学生对于在数轴上表示不等式的解集的掌握程度,不等式组的解集的表示方法:大小小大取中间是解题关键7、D【解析】A.32+4+2+1+1=40(人),故A正确;B. (3032+294+282+26+18)40=29.4(分),故B正确;C. 成绩是30分的人有32人,最

14、多,故C 正确;D. 该班学生这次考试成绩的中位数为30分,故D错误;8、C【解析】,.故选C.9、B【解析】根据等腰三角形两底角相等用表示出A2B2O,依此类推即可得到结论【详解】B1A2B1B2,A1B1O,A2B2O,同理A3B3O,A4B4O,AnBnO,A10B10O,故选B【点睛】本题考查了等腰三角形两底角相等的性质,图形的变化规律,依次求出相邻的两个角的差,得到分母成2的指数次幂变化,分子不变的规律是解题的关键10、C【解析】根据AF是BAC的平分线,BHAF,可证AF为BG的垂直平分线,然后再根据正方形内角及角平分线进行角度转换证明EGEB,FGFB,即可判定选项;设OAOBO

15、Ca,菱形BEGF的边长为b,由四边形BEGF是菱形转换得到CFGFBF,由四边形ABCD是正方形和角度转换证明OAEOBG,即可判定;则GOE是等腰直角三角形,得到GEOG,整理得出a,b的关系式,再由PGCBGA,得到1+,从而判断得出;得出EABGBC从而证明EABGBC,即可判定;证明FABPBC得到BFCP,即可求出,从而判断.【详解】解:AF是BAC的平分线,GAHBAH,BHAF,AHGAHB90,在AHG和AHB中,AHGAHB(ASA),GHBH,AF是线段BG的垂直平分线,EGEB,FGFB,四边形ABCD是正方形,BAFCAF4522.5,ABE45,ABF90,BEFB

16、AF+ABE67.5,BFE90BAF67.5,BEFBFE,EBFB,EGEBFBFG,四边形BEGF是菱形;正确;设OAOBOCa,菱形BEGF的边长为b,四边形BEGF是菱形,GFOB,CGFCOB90,GFCGCF45,CGGFb,CGF90,CFGFBF,四边形ABCD是正方形,OAOB,AOEBOG90,BHAF,GAH+AGH90OBG+AGH,OAEOBG,在OAE和OBG中,OAEOBG(ASA),正确;OGOEab,GOE是等腰直角三角形,GEOG,b(ab),整理得ab,AC2a(2+)b,AGACCG(1+)b,四边形ABCD是正方形,PCAB,1+,OAEOBG,AE

17、BG,1+,1,正确;OAEOBG,CABDBC45,EABGBC,在EAB和GBC中,EABGBC(ASA),BECG,正确;在FAB和PBC中,FABPBC(ASA),BFCP,错误;综上所述,正确的有4个,故选:C【点睛】本题综合考查了全等三角形的判定与性质,相似三角形,菱形的判定与性质等四边形的综合题该题难度较大,需要学生对有关于四边形的性质的知识有一系统的掌握11、A【解析】由一次函数y1=x与二次函数y2=ax2+bx+c图象相交于P、Q两点,得出方程ax2+(b-1)x+c=0有两个不相等的根,进而得出函数y=ax2+(b-1)x+c与x轴有两个交点,根据方程根与系数的关系得出函

18、数y=ax2+(b-1)x+c的对称轴x=-0,即可进行判断【详解】点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,x=ax2+bx+c,ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,方程ax2+(b-1)x+c=0有两个正实数根函数y=ax2+(b-1)x+c与x轴有两个交点,又-0,a0-=-+0函数y=ax2+(b-1)x+c的对称轴x=-0,A符合条件,故选A12、A【解析】根据位似的性质得ABCABC,再根据相似三角形的性质进行求解即可得.【详解】由位似变换的性质可知,ABAB,ACAC,ABCA

19、BC,ABC与ABC的面积的比4:9,ABC与ABC的相似比为2:3, ,故选A【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心二、填空题:(本大题共6个小题,每小题4分,共24分)13、1【解析】寻找规律:不难发现,第1个图形有3=221个小五角星;第2个图形有8=321个小五角星;第3个图形有15=421个小五角星;第n个图形有(n1)21个小五角星第10个图形有1121=1个小五角星14、且.【解析】方程两边同乘以x-1,化为整数方程,求得x,再列不等式得出m的取值范围【详解】方程两边

20、同乘以x-1,得,m-1=x-1,解得x=m-2,分式方程的解为正数,x=m-20且x-10,即m-20且m-2-10,m2且m1,故答案为m2且m115、1【解析】【分析】根据一元二次方程的定义以及一元二次方程的解的定义列出关于m的方程,通过解关于m的方程求得m的值即可【详解】关于x的一元二次方程mx1+5x+m11m=0有一个根为0,m11m=0且m0,解得,m=1,故答案是:1【点睛】本题考查了一元二次方程ax1+bx+c=0(a0)的解的定义解答该题时需注意二次项系数a0这一条件16、 【解析】试题分析:如图,BAD=CAE=90,DAC=BAE,在DAC和BAE中,AD=AB,DAC

21、=BAE,AC=AE,DACBAE(SAS),ADC=ABE,PDB+PBD=90,DPB=90,点P在以BC为直径的圆上,外心为O,BAC=60,BOC=120,又BC=6,OH=,所以OP的最小值是故答案为考点:1三角形的外接圆与外心;2全等三角形的判定与性质17、a(2x+y)(2x-y)【解析】首先提取公因式a,再利用平方差进行分解即可【详解】原式=a(4x2-y2)=a(2x+y)(2x-y),故答案为a(2x+y)(2x-y)【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止18、

22、1【解析】点P(m,2)与点Q(3,n)关于原点对称,m=3,n=2,则(m+n)2018=(3+2)2018=1,故答案为1三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、【解析】分析:首先将括号里面的分式进行通分,然后将分式的分子和分母进行因式分解,然后将除法改成乘法进行约分化简,最后将a的值代入化简后的式子得出答案详解:原式= 将原式=点睛:本题主要考查的是分式的化简求值,属于简单题型解决这个问题的关键就是就是将括号里面的分式进行化成同分母20、(1)本次试点投放的A型车60辆、B型车40辆;(2)3辆;2辆【解析】分析:(1)设本次试点投放的A型车

23、x辆、B型车y辆,根据“两种款型的单车共100辆,总价值36800元”列方程组求解可得;(2)由(1)知A、B型车辆的数量比为3:2,据此设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据“投资总价值不低于184万元”列出关于a的不等式,解之求得a的范围,进一步求解可得详解:(1)设本次试点投放的A型车x辆、B型车y辆,根据题意,得:,解得:,答:本次试点投放的A型车60辆、B型车40辆;(2)由(1)知A、B型车辆的数量比为3:2,设整个城区全面铺开时投放的A型车3a辆、B型车2a辆,根据题意,得:3a400+2a3201840000,解得:a1000,即整个城区全面铺开时投放的A型

24、车至少3000辆、B型车至少2000辆,则城区10万人口平均每100人至少享有A型车3000=3辆、至少享有B型车2000=2辆点睛:本题主要考查二元一次方程组和一元一次不等式的应用,解题的关键是理解题意找到题目蕴含的相等(或不等)关系,并据此列出方程组21、(1)见解析;(2)见解析【解析】(1)求出EFAC,根据EFAC,利用平行四边形的判定推出四边形ACEF是平行四边形即可;(2)求出CEAB,ACAB,推出 AC CE,根据菱形的判定推出即可.【详解】(1)证明:ACB90,DE是BC的垂直平分线,BDEACB90,EFAC,EFAC,四边形ACEF是平行四边形,AFCE;(2)当B3

25、0时,四边形ACEF是菱形,证明:B30,ACB90,ACAB,DE是BC的垂直平分线,BDDC,DEAC,BEAE,ACB90,CEAB,CEAC,四边形ACEF是平行四边形,四边形ACEF是菱形,即当B30时,四边形ACEF是菱形.【点睛】本题考查了菱形的判定平行四边形的判定线段垂直平分线,含30度角的直角三角形性质,直角三角形斜边上中线性质等知识点的应用综合性比较强,有一定的难度.22、(1)树状图见解析,则点M所有可能的坐标为:(1,1),(1,2),(1,1),(1,1),(1,2),(1,1),(2,1),(2,2),(2,1);(2)29.【解析】试题分析:(1)画出树状图,可求

26、得所有等可能的结果;(2)由点M(x,y)在函数y=2x的图象上的有:(1,2),(2,1),直接利用概率公式求解即可求得答案试题解析:(1)树状图如下图:则点M所有可能的坐标为:(1,1),(1,2),(1,1),(1,1),(1,2),(1,1),(2,1),(2,2),(2,1);(2)点M(x,y)在函数y=2x的图象上的有:(1,2),(2,1),点M(x,y)在函数y=2x的图象上的概率为:29考点:列表法或树状图法求概率.23、(1)等腰(2)(3)存在, 【解析】解:(1)等腰 (2)抛物线的“抛物线三角形”是等腰直角三角形, 该抛物线的顶点满足 (3)存在 如图,作与关于原点

27、中心对称, 则四边形为平行四边形 当时,平行四边形为矩形 又, 为等边三角形 作,垂足为 , , 设过点三点的抛物线,则 解之,得 所求抛物线的表达式为24、 ()B(3,0);C(0,3);()为直角三角形;().【解析】(1)首先用待定系数法求出抛物线的解析式,然后进一步确定点B,C的坐标(2)分别求出CDB三边的长度,利用勾股定理的逆定理判定CDB为直角三角形(3)COB沿x轴向右平移过程中,分两个阶段:当0t时,如答图2所示,此时重叠部分为一个四边形;当t3时,如答图3所示,此时重叠部分为一个三角形【详解】解:()点在抛物线上,得抛物线解析式为:,令,得,;令,得或,.()为直角三角形

28、.理由如下:由抛物线解析式,得顶点的坐标为.如答图1所示,过点作轴于点M,则,.过点作于点,则,.在中,由勾股定理得:;在中,由勾股定理得:;在中,由勾股定理得:.,为直角三角形. ()设直线的解析式为,解得,直线是直线向右平移个单位得到,直线的解析式为:;设直线的解析式为,解得:,.连续并延长,射线交交于,则.在向右平移的过程中:(1)当时,如答图2所示:设与交于点,可得,.设与的交点为,则:.解得,.(2)当时,如答图3所示:设分别与交于点、点.,.直线解析式为,令,得,.综上所述,与的函数关系式为:.25、足球单价是60元,篮球单价是90元【解析】设足球的单价分别为x元,篮球单价是1.5x元,列出分式方程解答即可【详解】解:足球的单价分别为x元,篮球单价是1.5x元,可得:,解得:x=60,经检验x=60是原方程的解,且符

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论