版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1下列运算正确的是()A3a+a=4aB3x22x=6x2C4a25a2=a2D(2x3)22x2=2x42已知关于x的一元二次方程3x2+4x5=0,下列说法正确的是( )A方程有两个相等的实数根B方程有两个不相等的实数根C没有实数根D无法
2、确定3第四届济南国际旅游节期间,全市共接待游客686000人次将686000用科学记数法表示为()A686104 B68.6105 C6.86106 D6.861054有一圆形苗圃如图1所示,中间有两条交叉过道AB,CD,它们为苗圃的直径,且ABCD入口K 位于中点,园丁在苗圃圆周或两条交叉过道上匀速行进.设该园丁行进的时间为x,与入口K的距离为y,表示y与x的函数关系的图象大致如图2所示,则该园丁行进的路线可能是( )AAODBCAO BCDOCDODBC5如图,O的直径AB垂直于弦CD,垂足为E.若,AC=3,则CD的长为A6BCD36函数的图象上有两点,若,则( )ABCD、的大小不确定
3、7如图,RtABC中,C=90,A=35,点D在边BC上,BD=2CD把ABC绕着点D逆时针旋转m(0m180)度后,如果点B恰好落在初始RtABC的边上,那么m=()A35B60C70D70或1208去年某市7月1日到7日的每一天最高气温变化如折线图所示,则关于这组数据的描述正确的是( )A最低温度是32B众数是35C中位数是34D平均数是339已知二次函数yax2+bx+c的图象如图所示,有以下结论:a+b+c0;ab+c1;abc0;4a2b+c0;ca1,其中所有正确结论的序号是()ABCD10计算的结果为()ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11已知ABC中
4、,C=90,AB=9,把ABC 绕着点C旋转,使得点A落在点A,点B落在点B若点A在边AB上,则点B、B的距离为_12如图,在平面直角坐标系中,OB在x轴上,ABO90,点A的坐标为(2,4),将AOB绕点A逆时针旋转90,点O的对应点C恰好落在反比例函数y的图象上,则k的值为_13分解因式:4a3bab_14如图,A、B、C是O上的三点,若C=30,OA=3,则弧AB的长为_(结果保留)15如图,已知点A(4,0),O为坐标原点,P是线段OA上任意一点(不含端点O、A),过P、O两点的二次函数y1和过P、A两点的二次函数y2的图象开口均向下,它们的顶点分别为B、C,射线OB与AC相交于点D当
5、ODAD3时,这两个二次函数的最大值之和等于_16高速公路某收费站出城方向有编号为的五个小客车收费出口,假定各收费出口每20分钟通过小客车的数量分别都是不变的.同时开放其中的某两个收费出口,这两个出口20分钟一共通过的小客车数量记录如下:收费出口编号通过小客车数量(辆)260330300360240在五个收费出口中,每20分钟通过小客车数量最多的一个出口的编号是_.三、解答题(共8题,共72分)17(8分)如图,将ABC放在每个小正方形的边长为1的网格中,点A、点B、点C均落在格点上(I)计算ABC的边AC的长为_(II)点P、Q分别为边AB、AC上的动点,连接PQ、QB当PQ+QB取得最小值
6、时,请在如图所示的网格中,用无刻度的直尺,画出线段PQ、QB,并简要说明点P、Q的位置是如何找到的_(不要求证明)18(8分)解不等式组并在数轴上表示解集19(8分)如图1,三个正方形ABCD、AEMN、CEFG,其中顶点D、C、G在同一条直线上,点E是BC边上的动点,连结AC、AM.(1)求证:ACMABE.(2)如图2,连结BD、DM、MF、BF,求证:四边形BFMD是平行四边形.(3)若正方形ABCD的面积为36,正方形CEFG的面积为4,求五边形ABFMN的面积. 20(8分)在某校举办的 2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品小王负责到某商场买某种纪念品
7、,该商场规定:一次性购买该纪念品 200 个以上可以按折扣价出售;购买 200 个以下(包括 200 个)只能按原价出售小王若按照原计划的数量购买纪念品,只能按原价付款,共需要 1050 元;若多买 35 个,则按折扣价付款,恰好共需 1050 元设小王按原计划购买纪念品 x 个(1)求 x 的范围;(2)如果按原价购买 5 个纪念品与按打折价购买 6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?21(8分)已知2是关于x的方程x22mx+3m0的一个根,且这个方程的两个根恰好是等腰ABC的两条边长,则ABC的周长为_22(10分)如图,在ABC中,C=90作BAC的平分线AD,交BC
8、于D;若AB=10cm,CD=4cm,求ABD的面积23(12分)如图,关于x的二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和点B与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D(1)求二次函数的表达式; (2)在y轴上是否存在一点P,使PBC为等腰三角形?若存在请求出点P的坐标; (3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到达点B时,点M、N同时停止运动,问点M、N运动到何处时,MNB面积最大,试求出最大面积24问题提出(1)如图1,在ABC中,A75,C60,AC6
9、,求ABC的外接圆半径R的值;问题探究(2)如图2,在ABC中,BAC60,C45,AC8,点D为边BC上的动点,连接AD以AD为直径作O交边AB、AC分别于点E、F,接E、F,求EF的最小值;问题解决(3)如图3,在四边形ABCD中,BAD90,BCD30,ABAD,BC+CD12,连接AC,线段AC的长是否存在最小值,若存在,求最小值:若不存在,请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、D【解析】根据合并同类项、单项式的乘法、积的乘方和单项式的乘法逐项计算,结合排除法即可得出答案.【详解】A. 3a+a=2a,故不正确; B. 3x22x=6x3,故不正确;C.
10、4a25a2=-a2 ,故不正确; D. (2x3)22x2=4x62x2=2x4,故正确;故选D.【点睛】本题考查了合并同类项、单项式的乘法、积的乘方和单项式的乘法,熟练掌握它们的运算法则是解答本题的关键.2、B【解析】试题分析:先求出=4243(5)=760,即可判定方程有两个不相等的实数根故答案选B.考点:一元二次方程根的判别式3、D【解析】根据科学记数法的表示形式(a10n,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数)可得:686000=6.86105,故选:D
11、4、B【解析】【分析】观察图象可知园丁与入口K的距离先减小,然后再增大,但是没有到过入口的位置,据此逐项进行分析即可得.【详解】A. AOD,园丁与入口的距离逐渐增大,逐渐减小,不符合;B. CAO B,园丁与入口的距离逐渐减小,然后又逐渐增大,符合;C. DOC,园丁与入口的距离逐渐增大,不符合;D. ODBC,园丁与入口的距离先逐渐变小,然后再逐渐变大,再逐渐变小,不符合,故选B.【点睛】本题考查了动点问题的函数图象,看懂图形,认真分析是解题的关键.5、D【解析】解:因为AB是O的直径,所以ACB=90,又O的直径AB垂直于弦CD,所以在RtAEC 中,A=30,又AC=3,所以CE=AB
12、=,所以CD=2CE=3,故选D.【点睛】本题考查圆的基本性质;垂经定理及解直角三角形,综合性较强,难度不大.6、A【解析】根据x1、x1与对称轴的大小关系,判断y1、y1的大小关系【详解】解:y=-1x1-8x+m,此函数的对称轴为:x=-=-=-1,x1x1-1,两点都在对称轴左侧,a0,对称轴左侧y随x的增大而增大,y1y1故选A【点睛】此题主要考查了函数的对称轴求法和函数的单调性,利用二次函数的增减性解题时,利用对称轴得出是解题关键7、D【解析】当点B落在AB边上时,根据DB=DB1,即可解决问题,当点B落在AC上时,在RTDCB2中,根据C=90,DB2=DB=2CD可以判定CB2D
13、=30,由此即可解决问题【详解】当点B落在AB边上时,DB=DB1,B=DB1B=55,m=BDB1=180-255=70,当点B落在AC上时,在RTDCB2中,C=90, DB2=DB=2CD,CB2D=30,m=C+CB2D=120,故选D.【点睛】本题考查的知识点是旋转的性质,解题关键是考虑多种情况,进行分类讨论.8、D【解析】分析:将数据从小到大排列,由中位数及众数、平均数的定义,可得出答案详解:由折线统计图知这7天的气温从低到高排列为:31、32、33、33、33、34、35,所以最低气温为31,众数为33,中位数为33,平均数是=33 故选D点睛:本题考查了众数、中位数的知识,解答
14、本题的关键是由折线统计图得到最高气温的7个数据9、C【解析】根据二次函数的性质逐项分析可得解.【详解】解:由函数图象可得各系数的关系:a0,b0,c0,则当x=1时,y=a+b+c0,正确;当x=-1时,y=a-b+c1,正确;abc0,正确;对称轴x=-1,则x=-2和x=0时取值相同,则4a-2b+c=10,错误;对称轴x=-=-1,b=2a,又x=-1时,y=a-b+c1,代入b=2a,则c-a1,正确故所有正确结论的序号是故选C10、A【解析】根据分式的运算法则即可【详解】解:原式=,故选A.【点睛】本题主要考查分式的运算。二、填空题(本大题共6个小题,每小题3分,共18分)11、4【
15、解析】过点C作CHAB于H,利用解直角三角形的知识,分别求出AH、AC、BC的值,进而利用三线合一的性质得出AA的值,然后利用旋转的性质可判定ACABCB,继而利用相似三角形的对应边成比例的性质可得出BB的值【详解】解:过点C作CHAB于H,在RtABC中,C=90,cosA= ,AC=ABcosA=6,BC=3 ,在RtACH中,AC=6,cosA=,AH=ACcosA=4,由旋转的性质得,AC=AC,BC=BC,ACA是等腰三角形,因此H也是AA中点,AA=2AH=8,又BCB和ACA都为等腰三角形,且顶角ACA和BCB都是旋转角,ACA=BCB,ACABCB,即 ,解得:BB=4.故答案
16、为:4.【点睛】此题考查了解直角三角形、旋转的性质、勾股定理、等腰三角形的性质、相似三角形的判定与性质,解答本题的关键是得出ACABCB12、1【解析】根据题意和旋转的性质,可以得到点C的坐标,把点C坐标代入反比例函数y=中,即可求出k的值【详解】OB在x轴上,ABO=90,点A的坐标为(2,4),OB=2,AB=4将AOB绕点A逆时针旋转90,AD=4,CD=2,且AD/x轴点C的坐标为(6,2),点O的对应点C恰好落在反比例函数y=的图象上,k=2,故答案为1【点睛】本题考查反比例函数图象上点的坐标特征、坐标与图形的变化-旋转,解答本题的关键是明确题意,利用数形结合的思想解答13、ab(2
17、a+1)(2a-1)【解析】先提取公因式再用公式法进行因式分解即可.【详解】4a3b- ab= ab(4a2-1)=ab(2a+1)(2a-1)【点睛】此题主要考查因式分解单项式,解题的关键是熟知因式分解的方法.14、【解析】C=30,AOB=60,.即的长为.15、【解析】此题考查了二次函数的最值,勾股定理,等腰三角形的性质和判定的应用,题目比较好,但是有一定的难度,属于综合性试题【详解】过B作BFOA于F,过D作DEOA于E,过C作CMOA于M,则BF+CM是这两个二次函数的最大值之和,BFDECM,求出AE=OE=2,DE= ,设P(2x,0),根据二次函数的对称性得出OF=PF=x,推
18、出OBFODE,ACMADE,得出= ,代入求出BF和CM,相加即可求出答案过B作BFOA于F,过D作DEOA于E,过C作CMOA于M,BFOA,DEOA,CMOA,BFDECMOD=AD=3,DEOA,OE=EA= OA=2,由勾股定理得:DE= =5,设P(2x,0),根据二次函数的对称性得出OF=PF=x,BFDECM,OBFODE,ACMADE,AM=PM= (OA-OP)= (4-2x)=2-x,即,解得:BF+CM= 故答案为【点睛】考核知识点:二次函数综合题熟记性质,数形结合是关键.16、B【解析】利用同时开放其中的两个安全出口,20分钟所通过的小车的数量分析对比,能求出结果【详
19、解】同时开放A、E两个安全出口,与同时开放D、E两个安全出口,20分钟的通过数量发现得到D疏散乘客比A快;同理同时开放BC与 CD进行对比,可知B疏散乘客比D快;同理同时开放BC与 AB进行对比,可知C疏散乘客比A快;同理同时开放DE与 CD进行对比,可知E疏散乘客比C快;同理同时开放AB与 AE进行对比,可知B疏散乘客比E快;所以B口的速度最快故答案为B【点睛】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题三、解答题(共8题,共72分)17、 作线段AB关于AC的对称线段AB,作BQAB于Q交AC于P,作PQAB于Q,此时PQ+QB的值最小
20、 【解析】(1)利用勾股定理计算即可;(2)作线段AB关于AC的对称线段AB,作BQAB于Q交AC于P,作PQAB于Q,此时PQ+QB的值最小【详解】解:(1)AC=故答案为(2)作线段AB关于AC的对称线段AB,作BQAB于Q交AC于P,作PQAB于Q,此时PQ+QB的值最小故答案为作线段AB关于AC的对称线段AB,作BQAB于Q交AC于P,作PQAB于Q,此时PQ+QB的值最小【点睛】本题考查作图-应用与设计,勾股定理,轴对称-最短问题,垂线段最短等知识,解题的关键是学会利用轴对称,根据垂线段最短解决最短问题,属于中考常考题型18、x0,不等式组的解集表示在数轴上见解析.【解析】先求出每一
21、个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集【详解】解不等式2x+10,得:x,解不等式,得:x0,则不等式组的解集为x0,将不等式组的解集表示在数轴上如下:【点睛】本题考查了解一元一次不等式组,解题的关键是掌握“同大取大;同小取小;大小小大中间找;大大小小找不到”19、(1)证明见解析;(2)证明见解析;(3)74.【解析】(1)根据四边形ABCD和四边形AEMN都是正方形得,CAB=MAC=45,BAE=CAM,可证ACMABE;(2)连结AC,由ACMABE得ACM=B=90,易证MCD=BDC=45,得BDCM,由MC=BE,FC=CE
22、,得MF=BD,从而可以证明四边形BFMD是平行四边形;(3)根据S五边形ABFMN=S正方形AEMN+S梯形ABFE+S三角形EFM求解即可.【详解】(1)证明:四边形ABCD和四边形AEMN都是正方形,CAB=MAC=45,CAB-CAE=MAC-CAE,BAE=CAM,ACMABE.(2)证明:连结AC因为ACMABE,则ACM=B=90,因为ACB=ECF=45,所以ACM+ACB+ECF=180,所以点M,C,F在同一直线上,所以MCD=BDC=45,所以BD平行MF,又因为MC=BE,FC=CE,所以MF=BC=BD,所以四边形BFMD是平行四边形(3)S五边形ABFMN=S正方形
23、AEMN+S梯形ABFE+S三角形EFM=62+42+(2+6)4+ 26=74.【点睛】本题主要考查了正方形的性质的应用,解此题的关键是能正确作出辅助线,综合性比较强,有一定的难度20、(1)0 x200,且 x是整数(2)175【解析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果【详解】(1)根据题意得:0 x200,且x为整数;(2)设小王原计划购买x个纪念品,根据题意得:,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王
24、原计划购买175个纪念品【点睛】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键21、11【解析】将x=2代入方程找出关于m的一元一次方程,解一元一次方程即可得出m的值,将m的值代入原方程解方程找出方程的解,再根据等腰三角形的性质结合三角形的三边关系即可得出三角形的三条边,根据三角形的周长公式即可得出结论【详解】将x=2代入方程,得:11m+3m=0,解得:m=1当m=1时,原方程为x28x+12=(x2)(x6)=0,解得:x1=2,x2=6,2+2=16,此等腰三角形的三边为6、6、2,此等腰三角形的周长C=6+6+2=1
25、1【点睛】考点:根与系数的关系;一元二次方程的解;等腰三角形的性质22、(1)答案见解析;(2)【解析】(1)根据三角形角平分线的定义,即可得到AD;(2)过D作于DEABE,根据角平分线的性质得到DE=CD=4,由三角形的面积公式即可得到结论.【详解】解:(1)如图所示,AD即为所求;(2)如图,过D作DEAB于E,AD平分BAC,DE=CD=4,SABD=ABDE=20cm2.【点睛】掌握画角平分线的方法和角平分线的相关定义知识是解答本题的关键.23、(1)二次函数的表达式为:y=x24x+3;(2)点P的坐标为:(0,3+3)或(0,33)或(0,-3)或(0,0);(3)当点M出发1秒
26、到达D点时,MNB面积最大,最大面积是1此时点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴下方2个单位处【解析】(1)把A(1,0)和C(0,3)代入y=x2+bx+c得方程组,解方程组即可得二次函数的表达式;(2)先求出点B的坐标,再根据勾股定理求得BC的长,当PBC为等腰三角形时分三种情况进行讨论:CP=CB;BP=BC;PB=PC;分别根据这三种情况求出点P的坐标;(3)设AM=t则DN=2t,由AB=2,得BM=2t,SMNB=(2t)2t=t2+2t,把解析式化为顶点式,根据二次函数的性质即可得MNB最大面积;此时点M在D点,点N在对称轴上x轴上方2个单位处或点N在对称轴上x轴
27、下方2个单位处【详解】解:(1)把A(1,0)和C(0,3)代入y=x2+bx+c,解得:b=4,c=3,二次函数的表达式为:y=x24x+3;(2)令y=0,则x24x+3=0,解得:x=1或x=3,B(3,0),BC=3,点P在y轴上,当PBC为等腰三角形时分三种情况进行讨论:如图1,当CP=CB时,PC=3,OP=OC+PC=3+3或OP=PCOC=33P1(0,3+3),P2(0,33);当PB=PC时,OP=OB=3,P3(0,-3);当BP=BC时,OC=OB=3此时P与O重合,P4(0,0);综上所述,点P的坐标为:(0,3+3)或(0,33)或(3,0)或(0,0);(3)如图2,设AM=t,由AB=2,得BM=2t,则DN=2t,SMNB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度航次租船合同金康版(强化船舶航行安全责任)3篇
- 二零二五年版广告媒介居间合作合同样本3篇
- 二零二五年房屋租赁合同终止与租赁物检查及修复协议3篇
- 二零二五年文化创意工作室职员岗位聘用协议3篇
- 2025装修工程施工合同终止协议
- 2025关于实习协议、就业协议和劳动合同区别
- 二零二五年度风景名胜区绿化工程合同2篇
- 二零二五版个人特种车辆贷款合同标准范本3篇
- 二零二五年度调味品食品包装设计与印刷合同2篇
- 二零二五年度酒店厕所装修改造合同2篇
- 普通高中地理新课程标准试题与答案(2017年版2020年修订)
- 水电费用及分摊方式
- 桩基检测选桩方案
- 脑梗塞老人的营养护理措施
- (特殊附件版)国土信息保密协议
- 2023年河南省中考数学试卷含答案解析
- 设备管理案例执行策略
- 48贵州省贵阳市2023-2024学年五年级上学期期末数学试卷
- 锅炉余热回收技术
- GA/T 2015-2023芬太尼类药物专用智能柜通用技术规范
- 新华DCS软件2.0版使用教程-文档资料
评论
0/150
提交评论