2023届四川省成都嘉祥外国语学校数学九上期末质量检测试题含解析_第1页
2023届四川省成都嘉祥外国语学校数学九上期末质量检测试题含解析_第2页
2023届四川省成都嘉祥外国语学校数学九上期末质量检测试题含解析_第3页
2023届四川省成都嘉祥外国语学校数学九上期末质量检测试题含解析_第4页
2023届四川省成都嘉祥外国语学校数学九上期末质量检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷

2、和答题卡一并交回。一、选择题(每题4分,共48分)1小敏打算在某外卖网站点如下表所示的菜品和米饭.已知每份订单的配送费为3元,商家为促销,对每份订单的总价(不含配送费)提供满减优惠:满30元减12元,满60元减30元,满100元减45元.如果小敏在购买下表的所有菜品和米饭时,采取适当的下单方式,那么他的总费用最低可为( )菜品单价(含包装费)数量水煮牛肉(小)30元1醋溜土豆丝(小)12元1豉汁排骨(小)30元1手撕包菜(小)12元1米饭3元2A48元B51元C54元D59元2已知二次函数y=,设自变量的值分别为x1,x2,x3,且3x1x2y2y3 By1y2y3y1Dy2y3”、“0,则该

3、函数的图象与x轴有两个不同的交点,此项错误;C、当a0,y=ax22ax1=a(x-1)2-a+1,则x1时,y随x的增大而增大,此项错误;D、当a0时,方程有两个不相等的实数根;(2)当=0时,方程有两个相等的实数根;(3)当【分析】先求出抛物线的对称轴为,由,则当,y随x的增大而减小,即可判断两个函数值的大小.【详解】解:二次函数(a是常数,a0),抛物线的对称轴为:,当,y随x的增大而减小,;故答案为:.【点睛】本题考查了二次函数的性质,解题的关键是熟练掌握二次函数的性质进行解题.16、3【分析】根据概率公式即可得出总数,再根据总数算出白球个数即可.【详解】摸到红球的概率为,且袋中只有1

4、个红球,袋中共有4个球,白球个数=4-1=3.故答案为:3.【点睛】本题考查概率相关的计算,关键在于通过概率求出总数即可算出白球.17、(1,0)【分析】通过解方程x2-2x+1=0得抛物线与x轴交点的交点坐标【详解】解:当y0时,x22x+10,解得x1x21,所以抛物线与x轴交点的交点坐标为(1,0)故答案为:(1,0)【点睛】本题考查抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a0)与x轴的交点坐标问题转化为解关于x的一元二次方程18、【解析】先计算出圆锥的底面圆的周长=18cm=16cm,而圆锥的侧面展开图为扇形,然后根据扇形的面积公式进行计算【详解】圆锥的

5、底面圆的半径是8cm,圆锥的底面圆的周长=18cm=16cm,圆锥的侧面积=10cm16cm=80cm1故答案是:80【点睛】考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长也考查了扇形的面积公式三、解答题(共78分)19、当BP=6时,CQ最大,且最大值为1.【分析】根据正方形的性质和余角的性质可得BEPCPQ,进而可证BPECQP,设CQy,BPx,根据相似三角形的性质可得y与x的函数关系式,然后利用二次函数的性质即可求出结果【详解】解:四边形ABCD是正方形,B=C=90,BEP+BPE90,QPC+BPE90,BEPCPQBPECQP

6、,设CQy,BPx,AB=BC=12,CP12xAEAB,AB=12,BE9,化简得:y(x212x),即y(x6)2+1,所以当x6时,y有最大值为1即当BP=6时,CQ有最大值,且最大值为1【点睛】本题考查了正方形的性质、相似三角形的判定和性质和二次函数的性质等知识,属于常见题型,熟练掌握相似三角形的性质和二次函数的性质是解答的关键20、(1),点的坐标为(2)线段与线段平行且相等(3)或1(4)存在;点的坐标为(0,3)或(,2)【分析】(1)直线y=x+1与抛物线交于A点,可得点A和点E坐标,则点B、C的坐标分别为:(3,0)、(0,3),即可求解;(2)CQ=AE,直线AQ和AE的倾

7、斜角均为45,即可求解;(3)根据题意将APD的面积和DAB的面积表示出来,令其相等,即可解出m的值;(4)分QOH=90、PQH=90、QHP=90三种情况,分别求解即可【详解】解:(1)直线与抛物线交于点,则点、点.,点的坐标为,故抛物线的表达式为,将点的坐标代入,得,解得,故抛物线的表达式为, 函数的对称轴为,故点的坐标为.(2)CQ=AE,且CQAE,理由是:,CQ=AE,直线CQ表达式中的k=1,与直线AE表达式中k相等,故AECQ,故线段CQ与线段AE的数量关系和位置关系是平行且相等;(3)联立直线与抛物线的表达式,并解得或2.故点.如图1,过点作轴的平行线,交于点,设点,则点.解

8、得或1. (4)存在,理由:设点,点,而点,当时,如图2,过点作轴的平行线,分别交过点、点与轴的平行线于点、,在PGQ和HMP中,即:,解得m=2或n=3,当n=3时,解得:或2(舍去),故点P;当时,如图3,则点、关于抛物线对称轴对称,即垂直于抛物线的对称轴,而对称轴与轴垂直,故轴,则,可得:MQP和NQH都是等腰直角三角形,MQ=MP,MQ=1-m,MP=4-n,n=3+m,代入,解得:或1(舍去),故点P;当时,如图4所示,点在下方,与题意不符,故舍去如图5,P在y轴右侧,同理可得PHKHQJ,可得QJ= HK,QJ=t-1,HK=t+1-n,t-1=t+1-n,n=2,解得:m=(舍去

9、)或,点P(,2)综上,点的坐标为:或(,2)【点睛】本题考查的是二次函数综合运用,难度较大,涉及到一次函数、三角形全等、图形的面积计算等,要注意分类求解,避免遗漏21、(1)m=;(2).【分析】(1)若一元二次方程有两等根,则根的判别式=b2-4ac=1,建立关于m的方程,求出m的取值(2)把m的值代入方程,利用求根公式可解出方程,求得方程的正根【详解】解:(1)b2-4ac=9-4m,9-4m=1时,方程有两个相等的实数根,解得:m=,即m=时,方程有两个相等的实数根(2)当m=-时,b2-4ac=9-4m=9+3=121,由求根公式得:;,所求的正根为.【点睛】本题主要考查了根的判别式

10、和利用求根公式解一元二次方程22、(1)8m;(2)不可以,水管高度调整到0.7m,理由见解析.【分析】(1)根据题意设最远的抛物线形水柱的解析式为,然后将(0,0.64)代入解析式求得a的值,然后求解析式y=0时,x的值,从而求得半径;(2)利用圆与圆的位置关系结合正方形,作出三个等圆覆盖正方形的图形,然后利用勾股定理求得圆的半径,从而使问题得解.【详解】解:(1)由题意,设最远的抛物线形水柱的解析式为,将(0,0.64)代入解析式,得解得:最远的抛物线形水柱的解析式为当y=0时,解得: 所以喷灌出的圆形区域的半径为8m;(2)如图,三个等圆覆盖正方形设圆的半径MN=NB=ME=DE=r,则

11、AN=16-r,MD=,AM=16-在RtAMN中, 解得: (其中,舍去)设最远的抛物线形水柱的解析式为,将(8.5,0)代入解得: 当x=0时,y= 水管高度约为0.7m时,喷灌区域恰好可以完全覆盖该绿化带【点睛】本题考查待定系数法求二次函数解析式,根据题意设抛物线为顶点式是本题的解题关键.23、(1)矩形零件PQMN的面积为2304mm2;(2)这个矩形零件PQMN面积S的最大值是2400mm2.【分析】(1)设PQ=xmm,则AE=AD-ED=80-x,再证明APNABC,利用相似比可表示出,根据正方形的性质得到(80-x)=x,求出x的值,然后结合正方形的面积公式进行解答即可(2)由

12、(1)可得,求此二次函数的最大值即可【详解】解:(1)设PQ=xmm,易得四边形PQDE为矩形,则ED=PQ=x,AE=AD-ED=80-x,PNBC,APNABC,即,PN=PQ,解得x=1故正方形零件PQMN面积S=11=2304(mm2)(2)当时,S有最大值=2400(mm2)所以这个矩形零件PQMN面积S的最大值是2400mm2.【点睛】本题考查综合考查相似三角形性质的应用以及二次函数的最大值的求法24、(1)k=10,b=3;(2).【解析】试题分析:(1)、将A点坐标代入反比例函数解析式和一次函数解析式分别求出k和b的值;(2)、首先根据一次函数求出点B的坐标,然后计算面积.试题

13、解析:(1)、把x=2,y=5代入y=,得k=25=10把x=2,y=5代入y=x+b,得b=3(2)、y=x+3 当y=0时,x=-3, OB=3 S=35=7.5考点:一次函数与反比例函数的综合问题.25、(1)2s(2)证明见解析,【解析】试题分析:(1)由当点B于点O重合的时候,BO=OD+BD=4cm,又由三角板以2cm/s的速度向右移动,即可求得三角板运动的时间;(2)连接OF,由AC与半圆相切于点F,易得OFAC,然后由ACB=90,易得OFCE,继而证得EF平分AEC;由AFO是直角三角形,BAC=30,OF=OD=3cm,可求得AF的长,由EF平分AEC,易证得AFE是等腰三

14、角形,且AF=EF,则可求得答案试题解析:(1)当点B于点O重合的时候,BO=OD+BD=4cm,t=42=2(s);三角板运动的时间为:2s;(2)证明:连接O与切点F,则OFAC,ACE=90,ECAC,OFCE,OFE=CEF,OF=OE,OFE=OEF,OEF=CEF,即EF平分AEC;由知:OFAC,AFO是直角三角形,BAC=30,OF=OD=3cm,tan30=3AF,AF=3cm,由知:EF平分AEC,AEF=CEF=AEC=30,AEF=EAF,AFE是等腰三角形,且AF=EF,EF=3cm.26、(1)图见解析,;(2)三分线长分别是和【分析】(1)根据等腰三角形的判定定理容易画出图形;由等腰三角形的性质即可求出各个顶角的度数;(2)根据等腰三角形的判定定力容易画出图形,设,则,则,得出对应边成比例,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论