广西河池天峨县2022年数学九上期末达标测试试题含解析_第1页
广西河池天峨县2022年数学九上期末达标测试试题含解析_第2页
广西河池天峨县2022年数学九上期末达标测试试题含解析_第3页
广西河池天峨县2022年数学九上期末达标测试试题含解析_第4页
广西河池天峨县2022年数学九上期末达标测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1O的半径为5,圆心O到直线l的距离为3,下列位置关系正确的是()ABCD2在中,若,则的值为( )ABCD3点M(2,-3)关于原点对称的点N的坐标是: ()A(-2,-3)B(-2,3)C(2,3)D(-3, 2)4下列四个交通标志

2、图案中,中心对称图形共有( )A1B2C3D45如图,在中,半径垂直弦于,点在上,则半径等于()ABCD6若点,在反比例函数的图象上,则y1,y2,y3的大小关系是( )ABCD7已知如图,线段AB=60,AD=13,DE=17,EF=7,请问在D,E,F,三点中,哪一点最接近线段AB的黄金分割点( )AD 点BE 点CF点DD 点或 F点8抛物线 的顶点坐标是( )A(2,1)BCD9如图,AB是O的直径,弦CDAB于点E若AB=8,AE=1,则弦CD的长是( )AB2C6D810如果1是方程的一个根,则方程的另一个根是( )AB2CD111下列4个图形中,是中心对称图形但不是轴对称图形的是

3、()ABCD12如图,A、B、C、D是O上的四点,BD为O的直径,若四边形ABCO是平行四边形,则ADB的大小为()A30B45C60D75二、填空题(每题4分,共24分)13已知两个二次函数的图像如图所示,那么 a1_a2(填“”、“”或“”)14若m是方程2x23x1的一个根,则6m29m的值为_15若关于x的一元二次方程(k1)x2+4x+1=0有实数根,则k的取值范围是_16一只不透明的布袋中有三种珠子(除颜色以外没有任何区别),分别是个红珠子,个白珠子和个黑珠子,每次只摸出一个珠子,观察后均放回搅匀,在连续次摸出的都是红珠子的情况下,第次摸出红珠子的概率是_17已知菱形中,边上有点点

4、两动点,始终保持,连接取中点并连接则的最小值是_18函数,其中是的反比例函数,则的值是_.三、解答题(共78分)19(8分)如图,AB是O的直径,点C、D在O上,AD与BC相交于点E连接BD,作BDFBAD,DF与AB的延长线相交于点F(1)求证:DF是O的切线;(2)若DFBC,求证:AD平分BAC;(3)在(2)的条件下,若AB10,BD6,求CE的长20(8分)在平面直角坐标系中,直线与双曲线交于点A(2,a) (1)求与的值;(2)画出双曲线的示意图; (3)设点是双曲线上一点(与不重合),直线与轴交于点,当时,结合图象,直接写出的值21(8分)以下各图均是由边长为1的小正方形组成的网

5、格,图中的点A、B、C、D均在格点上(1)在图中,PC:PB (2)利用网格和无刻度的直尺作图,保留痕迹,不写作法如图,在AB上找一点P,使AP1如图,在BD上找一点P,使APBCPD22(10分)为加强学生身体锻炼,某校开展体育“大课间”活动,学校决定在学生中开设A:篮球,B:立定跳远,C:跳绳,D:跑步,E:排球五种活动项目为了了解学生对五种项目的喜欢情况,随机抽取了部分学生进行调查,并将调查结果绘制成如图所示的两个统计图请结合图中的信息解答下列问题:(1)在这项调查中,共调查了_名学生; (2)请将两个统计图补充完整; (3)若该校有1200名在校学生,请估计喜欢排球的学生大约有多少人.

6、23(10分)某商品的进价为每件10元,现在的售价为每件15元,每周可卖出100件,市场调查反映:如果每件的售价每涨1元(售价每件不能高于20元),那么每周少卖10件.设每件涨价元(为非负整数),每周的销量为件.(1)求与的函数关系式及自变量的取值范围;(2)如果经营该商品每周的利润是560元,求每件商品的售价是多少元?24(10分)定义:如果三角形的两个内角与满足,那么称这样的三角形为“类直角三角形”尝试运用(1)如图1,在中,是的平分线证明是“类直角三角形”;试问在边上是否存在点(异于点),使得也是“类直角三角形”?若存在,请求出的长;若不存在,请说明理由类比拓展(2)如图2,内接于,直径

7、,弦,点是弧上一动点(包括端点,),延长至点,连结,且,当是“类直角三角形”时,求的长25(12分)如图,O 是ABC 的外接圆,O 点在 BC 边上,BAC 的平分线交O 于点 D,连接 BD、CD,过点 D 作 BC 的平行线,与 AB 的延长线相交于点 P(1)求证:PD 是O 的切线;(2)求证:PBDDCA26如图,某小区规划在一个长,宽的矩形场地上,修建两横两竖四条同样宽的道路,且横、竖道路分别与矩形的长、宽平行,其余部分种草坪,若使每块草坪的面积都为.应如何设计道路的宽度?参考答案一、选择题(每题4分,共48分)1、B【分析】根据圆O的半径和圆心O到直线l的距离的大小,相交:dr

8、;相切:dr;相离:dr;即可选出答案【详解】解:O的半径为5,圆心O到直线l的距离为3,53,即:dr,直线L与O的位置关系是相交故选:B【点睛】本题主要考查了对直线与圆的位置关系的性质,掌握直线与圆的位置关系的性质是解此题的关键.2、C【分析】根据特殊角的三角函数值求出B,再求A,即可求解.【详解】在中,若,则B=30故A=60,所以sinA=故选:C【点睛】本题考查的是三角函数,掌握特殊角的三角函数值是关键.3、B【解析】试题解析:已知点M(2,-3),则点M关于原点对称的点的坐标是(-2,3),故选B4、B【分析】根据中心对称的概念和各图形的特点即可求解.【详解】中心对称图形,是把一个

9、图形绕一个点旋转180后能和原来的图形重合,第一个和第二个都不符合;第三个和第四个图形是中心对称图形,中心对称图形共有2个.故选:B.【点睛】本题主要考查中心对称图形的概念,掌握中心对称图形的概念和特点,是解题的关键.5、B【分析】直接利用垂径定理进而结合圆周角定理得出是等腰直角三角形,进而得出答案【详解】半径弦于点,是等腰直角三角形,则半径故选:B【点睛】此题主要考查了勾股定理,垂径定理和圆周角定理,正确得出是等腰直角三角形是解题关键6、D【分析】由于反比例函数的系数是8,故把点A、B、C的坐标依次代入反比例函数的解析式,求出的值即可进行比较.【详解】解:点、在反比例函数的图象上,又,故选:

10、D【点睛】本题考查的是反比例函数的图象和性质,难度不大,理解点的坐标与函数图象的关系是解题的关键.7、C【分析】根据题意先计算出BD=60-13=47,AE=BE=30,AF=37,则E点为AB的中点,则计算BD:AB和AF:AB,然后把计算的结果与0.618比较,则可判断哪一点最接近线段AB的黄金分割点【详解】解:线段AB=60,AD=13,DE=17,EF=7,BD=60-13=47,AE=BE=30,AF=37,BD:AB=47:600.783,AF:AB=37:60=0.617,点F最接近线段AB的黄金分割点故选:C【点睛】本题考查黄金分割的定义,注意掌握把线段AB分成两条线段AC和B

11、C(ACBC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点其中,并且线段AB的黄金分割点有两个8、D【分析】根据抛物线顶点式解析式直接判断即可【详解】解:抛物线解析式为:,抛物线顶点坐标为:(2,1)故选:D【点睛】此题根据抛物线顶点式解析式求顶点坐标,掌握顶点式解析式的各项的含义是解此题的关键9、B【分析】连接OC,根据垂径定理和勾股定理,即可得答案【详解】连接OC,AB是O的直径,弦CDAB于点E,AB=8,AE=1,故选:B【点睛】本题考查了垂径定理和勾股定理,解题关键是学会添加常用辅助线面构造直角三角形解决问题10、

12、A【分析】利用方程解的定义找到相等关系,将该方程的已知根1代入两根之积公式和两根之和公式列出方程组,解方程组即可求出方程的另一根【详解】设方程的另一根为.又解得:故选A.【点睛】本题考查根与系数的关系,解题突破口是将1代入两根之积公式和两根之和公式列出方程组.11、A【分析】根据轴对称图形与中心对称图形的概念求解【详解】A、不是轴对称图形,是中心对称图形,故此选项正确;B、是轴对称图形,不是中心对称图形,故此选项错误;C、既不是轴对称图形,也不是中心对称图形,故此选项错误;D、既是轴对称图形,也是中心对称图形,不符合题意,故此选项错误故选A【点睛】此题主要考查了轴对称图形和中心对称图形,掌握好

13、中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合12、A【解析】解:四边形ABCO是平行四边形,且OA=OC,四边形ABCO是菱形,AB=OA=OB,OAB是等边三角形,AOB=60,BD是O的直径,点B、D、O在同一直线上,ADB=AOB=30故选A二、填空题(每题4分,共24分)13、【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案【详解】解:如图所示:的开口小于的开口,则a1a2,故答案为:.【点睛】此题主要考查了二次函数的图象,正确记忆开口大小与a的关系是解题关键14、1【分析】把m代

14、入方程2x21x1,得到2m2-1m=1,再把6m2-9m变形为1(2m2-1m),然后利用整体代入的方法计算【详解】解:m是方程2x21x1的一个根,2m21m1,6m29m1(2m21m)111故答案为1【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解15、k5且k1【解析】试题解析:一元二次方程(k1)x2+4x+1=0有实数根,k10,且b24ac=164(k1)0,解得:k5且k1.考点:根的判别式16、【分析】每次只摸出一个珠子时,布袋中共有珠子个,其中红珠子个,可以直接应用求概率的公式【详解】解:因为每次只摸出一个珠子时,布袋中共有珠

15、子个,其中红珠子个,所以第次摸出红珠子的概率是故答案是:【点睛】本题考查概率的意义,解题的关键是熟练掌握概率公式17、1【分析】过D点作DHBC交BC延长线与H点,延长EF交DH与点M,连接BM由菱形性质和可证明,进而可得,由BM最小值为BH即可求解【详解】解:过D点作DHBC交BC延长线与H点,延长EF交DH与点M,连接BM在菱形中,又,又,当BM最小时FG最小,根据点到直线的距离垂线段最短可知,BM的最小值等于BH,在菱形中, ,又在RtCHD中,AM的最小值为6,的最小值是1故答案为:1【点睛】本题考查了动点线段的最小值问题,涉及了菱形的性质、等腰三角形性质和判定、垂线段最短、中位线定理

16、等知识点;将“两动点”线段长通过中位线转化为“一定一动”线段长求解是解题关键18、【分析】根据反比例函数的定义知m1-5=-1,且m-10,据此可以求得m的值【详解】y=(m-1)xm15是y关于x的反比例函数,m1-5=-1,且m-10,(m+1)(m-1)=0,且m-10,m+1=0,即m=-1;故答案为:-1【点睛】本题考查了反比例函数的定义,重点是将一般式y=(k0)转化为y=kx-1(k0)的形式三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3)【分析】(1)如图,连结OD,只需推知ODDF即可证得结论;(2)根据平行线的性质得到FDBCBD,由圆周角的性质可得C

17、ADBADCBDBDF,即AD平分BAC;(3)由勾股定理可求AD的长,通过BDEADB,可得,可求DE,AE,由锐角三角函数可求CE的长【详解】(1)连接OD,CD,AB是直径,ADB90,ADO+ODB90,OAOD,BADADO,BDFBAD,BDF+ODB90,ODF90,ODDF,DF是O的切线;(2)DFBC,FDBCBD,CADCBD,且BDFBAD,CADBADCBDBDF,AD平分BAC;(3)AB10,BD6,AD,CBDBAD,ADBBDE90,BDEADB,DE,AEADDE,CADBAD,sinCADsinBAD CE【点睛】本题考查了圆的综合问题,掌握平行线的性质、

18、圆周角的性质、勾股定理、相似三角形的性质以及判定定理、锐角三角函数的定义是解题的关键20、(1),;(2)示意图见解析;(3)6,【分析】(1)把点A(2,a)代入直线解析式求出a,再把A(2,a)代入双曲线求出k即可;(2)先列表,再描点,然后连线即可;(3)利用数形结思想观察图形即可得到答案.【详解】(1) 直线过点, 又 双曲线()过点A(2,2), (2)列表如下:x-4-2-1124y-1-2-4421描点,连线如下:(3)6,当点P在第一象限时,如图,过点A作ACy轴于点C,过点P作PDy轴于点D,则BDPBCA, = 点A(2,2),AC=2,OC=2.PD=1.即m=1,当m=

19、1时,n=.即OD=4,CD=OD-OC=2.BD=CD=2.OB=BD+OD=6即b=6.当点p在第三象限时,如图,过点A作ACy轴于点C,过点P作PDy轴于点D,则BDPBCA, = 点A(2,2),AC=2,OC=2.PD=1.点p在第三象限,m=-1,当m=-1时,n=-4,OD=4,BD=OD-OB=4+b,CD=OC+OB=2-b, 解得,b=-2.综上所述,b的值为6或-2.【点睛】本题考查了一次函数与反比例函数的综合,掌握相关知识是解题的关键.21、(1)1:1;(2)如图2所示,点P即为所要找的点;见解析;如图1所示,作点A的对称点A,见解析;【分析】(1)根据两条直线平行、

20、对应线段成比例即可解答;(2)先用勾股定理求得AB的长,再根据相似三角形的判定方法即可找到点P;先作点A关于BD的对称点A,连接AC与BD的交点即为要找的点P.【详解】解:(1)图1中,ABCD,故答案为1:1(2)如图2所示,点P即为所要找的点;如图1所示,作点A的对称点A,连接AC,交BD于点P,点P即为所要找的点,ABCD,APBCPD【点睛】本题考查了相似三角形的做法,掌握相似三角形的判定方法是解答本题的关键.22、 (1)200;(2)答案见解析;(3)240人【分析】(1)由图1可得喜欢“B项运动”的有10人;由图2可得喜欢“B项运动”的占总数的5%;由105%即可求得总人数为20

21、0人;(2)由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30、40人,由此可得喜欢A项运动的人数为:200-10-40-30-40=80,由此在图1中补出表示A的条形即可;由80200100%可得喜欢A项运动的人所占的百分比;由30200100%可得喜欢D项运动的人所占的百分比;把所得百分比填入图2中相应的位置即可;(3)由120020%可得全校喜欢“排球”运动的人数.【详解】解:(1)由图1可得喜欢“B项运动”的有10人,由图2可得喜欢“B项运动”的占总数的5%,这次抽查的总人数为:105%=200(人);(2)由图1可知喜欢B、C、D、E四项运动的人数分别为10、40、30

22、、40人,喜欢A项运动的人数为:200-10-40-30-40=80,喜欢A项运动的人所占的百分比为:80200100%=40%;喜欢D项运动的人所占的百分比为:30200100%=15%;根据上述所得数据补充完两幅图形如下:(3)从抽样调查中可知,喜欢排球的人约占20%,可以估计全校学生中喜欢排球的学生约占20%,人数约为:120020%=240(人).答:全校学生中,喜欢排球的人数约为240人23、(1),;(2)每件的售价是17元或者18元.【分析】(1)根据“每件的售价每涨1元,那么每周少卖10件”,即可求出y与x的函数关系式,然后根据x的实际意义和售价每件不能高于20元即可求出x的取

23、值范围;(2)根据总利润=单件利润件数,列方程,并解方程即可【详解】(1)解:与的函数关系式为售价每件不能高于20元自变量的取值范围是;(2)解:设每件涨价元(为非负整数),则每周的销量为件,根据题意列方程,解得:,所以,每件的售价是17元或者18元答:如果经营该商品每周的利润是560元,求每件商品的售价是17元或者18元【点睛】此题考查的是一次函数的应用和一元二次方程的应用,掌握实际问题中的等量关系是解决此题的关键24、(1)证明见解析,存在,;(2)或【分析】(1)证明A+2ABD=90即可解决问题如图1中,假设在AC边设上存在点E(异于点D),使得ABE是“类直角三角形”证明ABCBEC,可得,由此构建方程即可解决问题(2)分两种情形:如图2中,当ABC+2C=90时,作点D关于直线AB的对称点F,连接FA,FB则点F在O上,且DBF=DOA如图3中,由可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分FBC,可证C+2ABC=90,利用相似三角形的性质构建方程即可解决问题【详解】(1)证明:如图1中,是的角平分线,为“类直角三角形”如图1中,假设在边设上存在点(异于点),使得是“类直角三角形”在中,(2)是直径,如图2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论