福建省晋江市2022-2023学年数学九上期末学业水平测试试题含解析_第1页
福建省晋江市2022-2023学年数学九上期末学业水平测试试题含解析_第2页
福建省晋江市2022-2023学年数学九上期末学业水平测试试题含解析_第3页
福建省晋江市2022-2023学年数学九上期末学业水平测试试题含解析_第4页
福建省晋江市2022-2023学年数学九上期末学业水平测试试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题3分,共30分)1如图,ABC中,B70,则BAC30,将ABC绕点C顺时针旋转得EDC当点B的对应点D恰好落在AC上时,CAE的度数是()A30B40C50D602某正多边形的一个外角的度数为 60,则这个正多边形的边数为( )A6B8C10D123骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化,其体温

2、()与时间(时)之间的关系如图所示若y()表示0时到t时内骆驼体温的温差(即0时到t时最高温度与最低温度的差)则y与t之间的函数关系用图象表示,大致正确的是()ABCD4老师设计了接力游戏,用合作的方式完成“求抛物线的顶点坐标”,规则如下:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成解答.过程如图所示:接力中,自己负责的一步出现错误的是( )A只有丁B乙和丁C乙和丙D甲和丁5三角形的两边长分别为3和2,第三边的长是方程的一个根,则这个三角形的周长是( )A10B8或7C7D86在RtABC中,C=90,AC=4,BC=3,则是ABCD7如图,在平面直角坐标系中,正

3、方形ABCD顶点B(1,1),C在x轴正半轴上,A在第二象限双曲线y上,过D作DEx轴交双曲线于E,连接CE,则CDE的面积为( )A3BC4D8如图,A,B是反比例函数y=图象上两点,ACy轴于C,BDx轴于D,ACBDOC,S四边形ABCD9,则k值为()A8B10C12D19如图,的外接圆的半径是.若,则的长为( )ABCD10如图,在正方形ABCD中,E为AB的中点,G,F分别为AD、BC边上的点,若AG=1,BF=2,GEF=90,则GF的长为( )A2B3C4D5二、填空题(每小题3分,共24分)11若二次函数的图像在x轴下方的部分沿x轴翻折到x轴上方,图像的其余部分保持不变,翻折

4、后的图像与原图像x轴上方的部分组成一个形如“W”的新图像,若直线y=-2x+b与该新图像有两个交点,则实数b的取值范围是_12如图所示,在菱形OABC中,点B在x轴上,点A的坐标为(6,10),则点C的坐标为_13若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是_14抛物线y(x+)23的顶点坐标是_15已知ABC中,BAC=90,用尺规过点A作一条直线,使其将ABC分成两个相似的三角形,其作法不正确的是_(填序号)16利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与

5、建筑物顶端的影子恰好落在地面的同一点E若标杆CD的高为1.5米,测得DE2米,BD16米,则建筑物的高AB为_米17在一个不透明的盒子中装有除了颜色以外没有任何其他区别的1个黑球和2个红球,从盒子中任意取出1个球,取出红球的概率是_.18已知AOB60,OC是AOB的平分线,点D为OC上一点,过D作直线DEOA,垂足为点E,且直线DE交OB于点F,如图所示若DE2,则DF_三、解答题(共66分)19(10分)从地面竖直向上抛出一个小球,小球的高度h(米)与运动时间t(秒)之间的关系式为h=30t5t2,那么小球抛出 秒后达到最高点20(6分)如图,在平面直角坐标系中,己知点,点在轴上,并且,动

6、点在过三点的拋物线上(1)求抛物线的解析式(2)作垂直轴的直线,在第一象限交直线于点,交抛物线于点,求当线段的长有最大值时的坐标并求出最大值是多少(3)在轴上是否存在点,使得是等腰三角形?若存在,请直接写出点的坐标;若不存在,请说明理由21(6分)如图所示,学校准备在教学楼后面搭建一简易矩形自行车车棚,一边利用教学楼的后墙(可利用的墙长为),另外三边利用学校现有总长的铁栏围成,留出2米长门供学生进出.若围成的面积为,试求出自行车车棚的长和宽.22(8分)解方程:x22x5123(8分)已知,如图在RtABC中,B90,AB6cm,BC8cm,点P由点A出发沿AB方向向终点B匀速移动,速度为1c

7、m/s,点Q由点B出发沿BC方向向终点C匀速移动,速度为2cm/s如果动点P,Q同时从A,B出发,当P或Q到达终点时运动停止几秒后,以Q,B,P为顶点的三角形与ABC相似?24(8分)从甲、乙、丙、丁4名同学中随机抽取环保志愿者求下列事件的概率: (1)抽取1名,恰好是甲; (2)抽取2名,甲在其中25(10分)如图,抛物线交轴于两点,交轴于点,点的坐标为,直线经过点.(1)求抛物线的函数表达式;(2)点是直线上方抛物线上的一动点,求面积的最大值并求出此时点的坐标;(3)过点的直线交直线于点,连接当直线与直线的一个夹角等于的2倍时,请直接写出点的坐标.26(10分)小明按照列表、描点、连线的过

8、程画二次函数的图象,下表与下图是他所完成的部分表格与图象,求该二次函数的解析式,并补全表格与图象参考答案一、选择题(每小题3分,共30分)1、C【解析】由三角形内角和定理可得ACB=80,由旋转的性质可得AC=CE,ACE=ACB=80,由等腰的性质可得CAE=AEC=50【详解】B70,BAC30ACB80将ABC绕点C顺时针旋转得EDCACCE,ACEACB80CAEAEC50故选C【点睛】本题考查了旋转的性质,等腰三角形的性质,熟练运用旋转的性质是本题的关键2、A【分析】根据外角和计算边数即可.【详解】正多边形的外角和是360,故选:A.【点睛】此题考查正多边形的性质,正多边形的外角和,

9、熟记正多边形的特点即可正确解答.3、A【分析】选取4时和8时的温度,求解温度差,用排除法可得出选项【详解】由图形可知,骆驼0时温度为:37摄氏度,4时温度为:35,8时温度为:37当t=4时,y=3735=2当t=8时,y=3735=2即在t、y的函数图像中,t=4对应的y为2,t=8对应的y为2满足条件的只有A选项故选:A【点睛】本题考查函数的图像,解题关键是根据函数的意义,确定函数图像关键点处的数值4、D【分析】观察每一项的变化,发现甲将老师给的式子中等式右边缩小两倍,到了丁处根据丙的式子得出了错误的顶点坐标.【详解】解:,可得顶点坐标为(-1,-6),根据题中过程可知从甲开始出错,按照此

10、步骤下去到了丁处可得顶点应为(1,-3),所以错误的只有甲和丁. 故选D.【点睛】本题考查了求二次函数的顶点坐标和配方法,解题的关键是掌握配方法化顶点式的方法.5、B【分析】因式分解法解方程求得x的值,再根据三角形的三边关系判断能否构成三角形,最后求出周长即可【详解】解:,(x2)(x3)0,x20或x30,解得:x2或x3,当x2时,三角形的三边223,可以构成三角形,周长为3227;当x3时,三角形的三边满足323,可以构成三角形,周长为3238,故选:B【点睛】本题主要考查解一元二次方程的能力和三角形三边的关系,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方

11、法,结合方程的特点选择合适、简便的方法是解题的关键6、A【分析】根据题意画出图形,由勾股定理求出AB的长,再根据三角函数的定义解答即可【详解】如图,在RtABC中,C=90,AC=4,BC=3,AB=5,sinA=,故选A.【点睛】本题考查锐角三角函数的定义.关键是熟练掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边7、B【分析】作辅助线,构建全等三角形:过A作GHx轴,过B作BGGH,过C作CMED于M,证明AHDDMCBGA,设A(x,),结合点B 的坐标表示:BGAHDM1x,由HQCM,列方程,可得x的值,进而根据三角形面积公式可得结论【详解】过A作GHx

12、轴,过B作BGGH,过C作CMED于M,设A(x,),四边形ABCD是正方形,ADCDAB,BADADC90,BAG=ADH=DCM,AHDDMCBGA(AAS),BGAHDM1x,AGCMDH1,AH+AQCM,11x,解得:x2,A(2,2),CMAGDH13,BGAHDM1x1,点E的纵坐标为3,把y3代入y得:x,E(,3),EH2,DEDHHE3,SCDEDECM3故选:B【点睛】本题主要考查反比例函数图象和性质与几何图形的综合,掌握“一线三垂直”模型是解题的关键8、B【分析】分别延长CA、DB,它们相交于E,如图,设ACt,则BDt,OC5t,根据反比例函数图象上点的坐标特征得到k

13、ODtt5t,则OD5t,所以B点坐标为(5t,t),于是AECECA4t,BEDEBD4t,再利用S四边形ABCDSECDSEAB得到5t5t4t4t9,解得t22,然后根据kt5t进行计算【详解】解:分别延长CA、DB,它们相交于E,如图,设ACt,则BDt,OC5t,A,B是反比例函数y=图象上两点,kODtt5t,OD5t,B点坐标为(5t,t),AECECA4t,BEDEBD4t,S四边形ABCDSECDSEAB,5t5t4t4t9,t22,kt5t5t2522故选:B【点睛】本题考查了比例系数k的几何意义:在反比例函数yxk图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴

14、围成的矩形的面积是定值|k|9、A【分析】由题意连接OA、OB,根据圆周角定理求出AOB,利用勾股定理进行计算即可【详解】解:连接OA、OB,由圆周角定理得:AOB=2C=90,所以的长为.故选:A.【点睛】本题考查的是三角形的外接圆和外心的概念和性质,掌握圆周角定理和勾股定理是解题的关键10、B【解析】四边形ABCD是正方形,A=B=90,AGE+AEG=90,BFE+FEB=90,GEF=90,GEA+FEB=90,AGE=FEB,AEG=EFB,AEGBFE,又AE=BE,AE2=AGBF=2,AE=(舍负),GF2=GE2+EF2=AG2+AE2+BE2+BF2=1+2+2+4=9,G

15、F的长为3,故选B.【点睛】本题考查了相似三角形的性质的应用,利用勾股定理即可得解,解题的关键是证明AEGBFE二、填空题(每小题3分,共24分)11、【分析】当直线y=-2x+b处于直线m的位置时,此时直线和新图象只有一个交点A,当直线处于直线n的位置时,此时直线与新图象有三个交点,当直线y=-2x+b处于直线m、n之间时,与该新图象有两个公共点,即可求解【详解】解:设y=x2-4x与x轴的另外一个交点为B,令y=0,则x=0或4,过点B(4,0),由函数的对称轴,二次函数y=x2-4x翻折后的表达式为:y=-x2+4x,当直线y=-2x+b处于直线m的位置时,此时直线和新图象只有一个交点A

16、,当直线处于直线n的位置时,此时直线n过点B(4,0)与新图象有三个交点,当直线y=-2x+b处于直线m、n之间时,与该新图象有两个公共点,当直线处于直线m的位置:联立y=-2x+b与y=x2-4x并整理:x2-2x-b=0,则=4+4b=0,解得:b=-1;当直线过点B时,将点B的坐标代入直线表达式得:0=-1+b,解得:b=1,故-1b1;故答案为:-1b1【点睛】本题考查的是二次函数综合运用,涉及到函数与x轴交点、几何变换、一次函数基本知识等内容,本题的关键是确定点A、B两个临界点,进而求解12、(6,10)【分析】根据菱形的性质可知A、C关于直线OB对称,再根据关于x轴对称的点的坐标特

17、点:横坐标不变,纵坐标互为相反数解答即可【详解】解:四边形OABC是菱形,A、C关于直线OB对称,A(6,10),C(6,10),故答案为:(6,10)【点睛】本题考查了菱形的性质和关于x轴对称的点的坐标特点,属于基本题型,熟练掌握菱形的性质是关键13、【分析】先根据定弦抛物线的定义求出定弦抛物线的表达式,再按图象的平移规律平移即可【详解】某定弦抛物线的对称轴为直线某定弦抛物线过点 该定弦抛物线的解析式为 将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线的解析式是 即故答案为:【点睛】本题主要考查二次函数图象的平移,能够求出定弦抛物线的表达式并掌握平移规律是解题的关键14、(,3)

18、【分析】根据ya(xh)2+k的顶点是(h,k),可得答案【详解】解:y(x+)23的顶点坐标是(,3),故答案为:(,3)【点睛】本题考查了抛物线顶点坐标的问题,掌握抛物线顶点式解析式是解题的关键15、【分析】根据过直线外一点作这条直线的垂线,及线段中垂线的做法,圆周角定理,分别作出直角三角形斜边上的垂线,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;即可作出判断.【详解】、在角BAC内作作CAD=B,交BC于点D,根据余角的定义及等量代换得出BBAD=90,进而得出ADBC,根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角

19、形,图中的三个直角三角形式彼此相似的;、以点A为圆心,略小于AB的长为半径,画弧,交线段BC两点,再分别以这两点为圆心,大于两交点间的距离为半径画弧,两弧相交于一点,过这一点与A点作直线,该直线是BC的垂线;根据直角三角形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形是彼此相似的;、以点B为圆心BA的长为半径画弧,交BC于点E,再以E点为圆心,AB的长为半径画弧,在BC的另一侧交前弧于一点,过这一点及A点作直线,该直线不一定是BE的垂线;从而就不能保证两个小三角形相似;、以AB为直径作圆,该圆交BC于点D,根据圆周角定理,过AD两点作直线该直线垂直于BC,根据直角三角

20、形斜边上的垂线,把原直角三角形分成了两个小直角三角形,图中的三个直角三角形式彼此相似的;故答案为:.【点睛】此题主要考查了相似变换以及相似三角形的判定,正确掌握相似三角形的判定方法是解题关键16、13.5【分析】根据同一时刻同一地点物高与影长成正比列式求得CD的长即可【详解】解:ABCD,EBAECD,即,AB13.5(米)故答案为:13.5【点睛】此题主要考查相似三角形的性质,解题的关键是熟知相似三角形的判定与性质.17、【分析】根据概率的定义即可解题.【详解】解:一共有3个球,其中有2个红球,红球的概率=.【点睛】本题考查了概率的实际应用,属于简单题,熟悉概念是解题关键.18、1【分析】过

21、点D作DMOB,垂足为M,则DM=DE=2,在RtOEF中,利用三角形内角和定理可求出DFM=30,在RtDMF中,由30角所对的直角边等于斜边的一半可求出DF的长,此题得解【详解】过点D作DMOB,垂足为M,如图所示OC是AOB的平分线,DMDE2在RtOEF中,OEF90,EOF60,OFE30,即DFM30在RtDMF中,DMF90,DFM30,DF2DM1故答案为1【点睛】本题考查了角平分线的性质、三角形内角和定理以及含30度角的直角三角形,利用角平分线的性质及30角所对的直角边等于斜边的一半,求出DF的长是解题的关键三、解答题(共66分)19、1【解析】试题分析:首先理解题意,先把实

22、际问题转化成数学问题后,知道解此题就是求出h=10t5t2的顶点坐标即可解:h=5t2+10t,=5(t26t+9)+45,=5(t1)2+45,a=50,图象的开口向下,有最大值,当t=1时,h最大值=45;即小球抛出1秒后达到最高点故答案为120、(1);(2)存在,最大值为4,此时的坐标为;(3)存在,或或或【分析】(1)先确定A(4,0),B(-1,0),再设交点式y=a(x+1)(x-4),然后把C点坐标代入求出a即可;(2)作PEx轴,交AC于D,垂足为E,如图,易得直线AC的解析式为y=-x+4,设P(x,-x2+3x+4)(0 x4),则D(x,-x+4),再用x表示出PD,然

23、后根据二次函数的性质解决问题;(3)先计算出AC=4,再分类讨论:当QA=QC时,易得Q(0,0);当CQ=CA时,利用点Q与点A关于y轴对称得到Q点坐标;当AQ=AC=4时可直接写出Q点的坐标【详解】(1)C(0,4),OC=4,OA=OC=4OB,OA=4,OB=1,A(4,0),B(-1,0),设抛物线解析式为y=a(x+1)(x-4),把C(0,4)代入得a1(-4)=4,解得a=-1,抛物线解析式为y=-(x+1)(x-4),即y=-x2+3x+4;(2)作PEx轴,交AC于D,垂足为E,如图,设直线AC的解析式为:y=kx+b,A(4,0),C(0,4) 解得,直线AC的解析式为y

24、=-x+4,设P(x,-x2+3x+4)(0 x4),则D(x,-x+4),PD=-x2+3x+4-(-x+4)=-x2+4x=-(x-2)2+4,当x=2时,PD有最大值,最大值为4,此时P点坐标为(2,6);(3)存在OA=OC=4,AC=4,当QA=QC时,Q点在原点,即Q(0,0);当CQ=CA时,点Q与点A关于y轴对称,则Q(-4,0);当AQ=AC=4时,Q点的坐标(4+4,0)或(4-4,0),综上所述,Q点的坐标为(0,0)或(-4,0)或(4+4,0)或(4-4,0)【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图形上点的坐标特征、二次函数的性质和等腰三角形的性质;会利

25、用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题21、若围成的面积为,自行车车棚的长和宽分别为10米,18米.【分析】设自行车车棚的宽AB为x米,则长为(38-2x)米,根据矩形的面积公式,即可列方程求解即可【详解】解:现有总长的铁栏围成,需留出2米长门设,则;根据题意列方程,解得,;当,(米),当,(米),而墙长,不合题意舍去,答:若围成的面积为,自行车车棚的长和宽分别为10米,18米.【点睛】本题考查的是一元二次方程的应用,结合图形求解找到关键描述语,找到等量关系准确的列出方程是解决问题的关键22、x11+,x21【解析】利用完全平方公式配平方,再利用直接开方

26、法求方程的解即可【详解】解:x22x+16,那么(x1)26,即x1,则x11+,x21【点睛】本题考查了配方法解一元二次方程,配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方23、2.4秒或秒【分析】设t秒后,以Q,B,P为顶点的三角形与ABC相似;则PB=(6-t)cm,BQ=2tcm,分两种情况:当时,当时,分别解方程即可得出结果【详解】解:设t秒后,以Q,B,P为顶点的三角形与ABC相似,则PB(6t)cm,BQ2tcm,B90,分两种情况:当时,即,解得:t2.4;当时,即,解得:t;综上所述:2.4秒或秒时,以Q,B,P为顶点的三角形与ABC相似【点睛】本题主要考查了相似三角形的判定,掌握相似三角形的判定是解题的关键.24、 (1)14;(2)12. 【解析】试题分析:(1)根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率.因此,由从甲、乙、丙3名同学中随机抽取环保志愿者,直接利用概率公式求解即可求得答案.(2)利用列举法可得抽取2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论