版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD2如图,已知直线abc,直线m交直线a,b,c于点A,B,C,直线n交直线a,b,c于点D,E,F,若,则=()ABCD13一枚质地均匀的骰子,它的
2、六个面上分别有1到6的点数下列事件中,是不可能事件的是()A掷一次这枚骰子,向上一面的点数小于5B掷一次这枚骰子,向上一面的点数等于5C掷一次这枚骰子,向上一面的点数等于6D掷一次这枚骰子,向上一面的点数大于64若抛物线yx2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m+8,n),则n()A0B3C16D95若x1是方程(a0)的一个根,设,则p与q的大小关系为()ApqBpqCpqD不能确定6下列函数是关于的反比例函数的是( )ABCD7方程1的解是()A1B2或1C2或3D38如图,在扇形中,则阴影部分的面积是( )ABCD9在九年级体育中考中,某班参加仰卧起坐测试的一组女生
3、(每组8人)测试成绩如下(单位:次/分):46,44,45,42,48,46,47,46.则这组数据的中位数为( )A42B45C46D4810如图,该几何体的主视图是( )ABCD二、填空题(每小题3分,共24分)11已知一元二次方程的两根为、,则_12如图,个全等的等腰三角形的底边在同一条直线上,底角顶点依次重合连接第一个三角形的底角顶点和第个三角形的顶角顶点交于点,则_13计算的结果是_14用正五边形钢板制作一个边框总长为40cm的五角星(如图),则正五边形的边长为cm(保留根号)_15如图,正方形的顶点、在圆上,若,圆的半径为2,则阴影部分的面积是_(结果保留根号和)16已知两个相似三
4、角形对应中线的比为,它们的周长之差为,则较大的三角形的周长为_17方程的解是_18如图,正方形ABCD的边长为,E,F分别是AB,BC的中点,AF与DE,DB分别交于点M,N,则DMN的面积= 三、解答题(共66分)19(10分)如图,AB是O的直径,点P是AB上一点,且点P是弦CD的中点(1)依题意画出弦CD,并说明画图的依据;(不写画法,保留画图痕迹)(2)若AP2,CD8,求O的半径20(6分)近年来某市大力发展绿色交通,构建公共、绿色交通体系,将“共享单车”陆续放置在人口流量较大的地方,琪琪同学随机调查了若干市民用“共享单车”的情况,将获得的数据分成四类,:经常使用;:偶尔使用;:了解
5、但不使用;:不了解,并绘制了如下两个不完整的统计图.请根据以上信息,解答下列问题:(1)这次被调查的总人数是 人,“:了解但不使用”的人数是 人,“:不了解”所占扇形统计图的圆心角度数为 .(2)某小区共有人,根据调查结果,估计使用过“共享单车”的大约有多少人?(3)目前“共享单车”有黄色、蓝色、绿色三种可选,某天小张和小李一起使用“共享单车”出行,求两人骑同一种颜色单车的概率.21(6分)对于平面直角坐标系中的点和半径为1的,定义如下:点的“派生点”为;若上存在两个点,使得,则称点为的“伴侣点”应用:已知点(1)点的派生点坐标为_;在点中,的“伴侣点”是_;(2)过点作直线交轴正半轴于点,使
6、,若直线上的点是的“伴侣点”,求的取值范围;(3)点的派生点在直线,求点与上任意一点距离的最小值22(8分)(2016山东省聊城市)如图,在直角坐标系中,直线与反比例函数的图象交于关于原点对称的A,B两点,已知A点的纵坐标是1(1)求反比例函数的表达式;(2)将直线向上平移后与反比例函数在第二象限内交于点C,如果ABC的面积为48,求平移后的直线的函数表达式23(8分)用适当的方法解下列一元二次方程:(1)(2)24(8分)已知,求代数式的值25(10分)解方程:(1)解方程:;(2)26(10分)如图,反比例函数的图象过点A(2,3)(1)求反比例函数的解析式;(2)过A点作ACx轴,垂足为
7、C若P是反比例函数图象上的一点,求当PAC的面积等于6时,点P的坐标参考答案一、选择题(每小题3分,共30分)1、A【详解】解:AE平分BAD,DAE=BAE;又四边形ABCD是平行四边形,ADBC,BEA=DAE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中,AGB=90,AB=6,BG=,AG=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE:SCEF=(BE:CE)2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形
8、的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键2、A【分析】由题意直接根据平行线分线段成比例定理进行分析即可求解【详解】解:a/b/c,=故选:A【点睛】本题考查平行线分线段成比例定理注意掌握三条平行线截两条直线,所得的对应线段成比例3、D【分析】事先能肯定它一定不会发生的事件称为不可能事件,据此进行判断即可【详解】解:A掷一次这枚骰子,向上一面的点数小于5,属于随机事件,不合题意;B掷一次这枚骰子,向上一面的点数等于5,属于随机事件,不合题意;C掷一次这枚骰子,向上一面的点数等于6,属于随机事件,不合题意;D掷一次这枚骰子,向上一面的点数大于6,属于不可能事件,符合题意;故选:D
9、【点睛】本题考查的知识点是不可能事件的定义,比较基础,易于掌握4、C【分析】根据点A、B的坐标易求该抛物线的对称轴是xm+1故设抛物线解析式为y(x+m+1)2,直接将A(m,n)代入,通过解方程来求n的值【详解】抛物线yx2+bx+c过点A(m,n),B(m+8,n),对称轴是xm+1又抛物线yx2+bx+c与x轴只有一个交点,设抛物线解析式为y(xm1)2,把A(m,n)代入,得n(mm+1)22,即n2故选:C【点睛】本题考查了抛物线与x轴的交点解答该题的技巧性在于找到抛物线的顶点坐标,根据顶点坐标设抛物线的解析式5、A【分析】把x1代入方程ax2-2x-c=0得ax12-2x1=c,作
10、差法比较可得【详解】解:x1是方程ax2-2x-c=0(a0)的一个根,ax12-2x1-c=0,即ax12-2x1=c,则p- q=(ax1-1)2-(ac+1.5)=a2x12-2ax1+1-1.5-ac=a(ax12-2x1)-ac-0.5=ac-ac-0.5=-0.5,-0.50,p- q0,pq故选:A【点睛】本题主要考查一元二次方程的解及作差法比较大小,熟练掌握能使方程成立的未知数的值叫做方程的解,利用比差法比较大小是解题的关键6、B【分析】根据反比例函数的定义进行判断【详解】A,是一次函数,此选项错误;B,是反比例函数,此选项正确;C,是二次函数,此选项错误;D,是y关于(x+1
11、)的反比例函数,此选项错误故选:B【点睛】本题考查了反比例函数的定义,解题的关键是掌握反比例函数的定义7、D【分析】找到最简公分母,去分母后得到关于x的一元二次方程,求解后,再检验是否有增根问题可解.【详解】解:去分母得2x(x24)x2,整理得x2x60,解得x11,x2-2,检验:当x1时,x240,所以x1是原方程的解;当x-2时,x240,所以x2是原方程的增根,所以原方程的解为x1故选:D【点睛】本题考查了可化为一元二次方程的分式方程的解法,解答完成后要对方程的根进行检验,判定是否有增根产生.8、D【分析】利用阴影部分的面积等于扇形面积减去的面积即可求解.【详解】 = 故选D【点睛】
12、本题主要考查扇形面积和三角形面积,掌握扇形面积公式是解题的关键.9、C【解析】根据中位数的定义,把8个数据从小到大的顺序依次排列后,求第4,第5位两数的平均数即为本组数据的中位数.【详解】解:把数据由小到大排列为:42,44,45,46,46,46,47,48中位数为. 故答案为:46.【点睛】找中位数的时候一定要先排好大小顺序,再根据奇数个数和偶数个数来确定中位数.如果是奇数个,则正中间的数字即为中位数;如果是偶数个,则找中间两个数的平均数为中位数.先将数据按从小到大顺序排列是求中位数的关键.10、C【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中【详解】解:从正面
13、看易得是1个大正方形,大正方形左上角有个小正方形故答案选:C【点睛】本题主要考查了三视图的知识,主视图是从物体的正面看得到的视图,难度适中.二、填空题(每小题3分,共24分)11、1【分析】根据根与系数的关系得到x1+x2=-3,x1x2=-4,再利用完全平方公式变形得到x12+x1x2+x22=(x1+x2)2-x1x2,然后利用整体代入的方法计算【详解】根据题意得x1+x2=-3,x1x2=-4,所以x12+x1x2+x22=(x1+x2)2-x1x2=(-3)2-(-4)=1故答案为1【点睛】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a0)的两根时,x1+
14、x2=-,x1x2=12、n【分析】连接A1An,根据全等三角形的性质得到AB1B2=A2B2B3,根据平行线的判定得到A1B1A2B2,又根据A1B1=A2B2,得到四边形A1B1B2A2是平行四边形,从而得到A1A2B1B2,从而得出A1AnB1B2,然后根据相似三角形的性质即可得到结论【详解】解:连接A1An,根据全等三角形的性质得到AB1B2=A2B2B3,A1B1A2B2,又A1B1=A2B2,四边形A1B1B2A2是平行四边形.A1A2B1B2,A1A2=B1B2=A2A3,同理可得,A2A3=A3A4 =A4A5= An-1An.根据全等易知A1,A2,A3,,An共线,A1An
15、B1B2,PnB1B2PnAnA1,,又A1Pn+PnB2=A1B2,.故答案为:n.【点睛】本题考查了相似三角形的判定和性质,全等三角形的性质,等腰三角形的性质,正确的识别图形是解题的关键13、1【分析】先分母有理化,然后把二次根式化为最简二次根式后合并即可【详解】解:原式2-21故答案为1【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍14、【分析】根据正五边形的概念可证得,利用对应边成比例列方程即可求得答案.【详解】如图,由边框总长
16、为40cm的五角星,知:,ABCDE为圆内接正五边形,同理:,设,则,即:,化简得:,配方得:,解得:2(负值已舍) ,故答案为:2【点睛】本题考查了圆内接正五边形的性质、相似三角形的判定和性质、一元二次方程的解法,判定是正确解答本题的关键.15、【分析】设AD和BC分别与圆交于点E和F,连接AF、OE,过点O作OGAE,根据90的圆周角对应的弦是直径,可得AF为圆的直径,从而求出AF,然后根据锐角三角函数和勾股定理,即可求出AFB和BF,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG、AG和EOF,最后利用S阴影=S梯形AFCDSAOES扇形EOF计算即可【详解】解:设AD和B
17、C分别与圆交于点E和F,连接AF、OE,过点O作OGAE四边形ABCD是正方形ABF=90,ADBC,BC=CD=AD=cmAF为圆的直径,圆的半径为2,AF=4cm在RtABF中sinAFB=,BF=AFB=60,FC=BCBF=EAF=AFB=60EOF=2EAF=120在RtAOG中,OG=sinEAFAO=,AG= cosEAFAO=1cm根据垂径定理,AE=2AG=2cmS阴影=S梯形AFCDSAOES扇形EOF=故答案为:【点睛】此题考查的是求不规则图形的面积,掌握正方形的性质、90的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键16、
18、15【分析】利用相似三角形对应中线的比可得出对应周长的比,根据周长之差为10即可得答案【详解】设较小的三角形的周长为x,两个相似三角形对应中线的比为1:3,两个相似三角形对应周长的比为1:3,较大的三角形的周长为3x,它们的周长之差为10,3x-x=10,解得:x=5,3x=15,故答案为:15【点睛】本题考查相似三角形的性质,相似三角形对应中线、高、周长的边都等于相似比;面积比等于相似比的平方17、x1=3,x2=-1【分析】利用因式分解法解方程.【详解】,(x-3)(x+1)=0,x1=3,x2=-1,故答案为:x1=3,x2=-1.【点睛】此题考查一元二次方程的解法,根据方程的特点选择适
19、合的方法解方程是关键.18、1【分析】首先连接DF,由四边形ABCD是正方形,可得BFNDAN,又由E,F分别是AB,BC的中点,可得=2,ADEBAF(SAS),然后根据相似三角形的性质与勾股定理,可求得AN,MN的长,即可得MN:AF的值,再利用同高三角形的面积关系,求得DMN的面积【详解】连接DF,四边形ABCD是正方形,ADBC,AD=BC=,BFNDAN,F是BC的中点,AN=2NF,在RtABF中,E,F分别是AB,BC的中点,AD=AB=BC,DAE=ABF=90,在ADE与BAF中,ADEBAF(SAS),AED=AFB,AME=110-BAF-AED=110-BAF-AFB=
20、90,又,故答案为:1三、解答题(共66分)19、(1)画图见解析,依据:平分弦(非直径)的直径垂直于弦;(2)O的半径为1【分析】(1)过P点作AB的垂线即可,作图依据是垂径定理的推论(2)设O的半径为r,在RtOPD中,利用勾股定理构建方程即可解决问题【详解】(1)过P点作AB的垂线交圆与C、D两点, CD就是所求的弦,如图依据:平分弦(非直径)的直径垂直于弦;(2)如图,连接OD,OACD于点P,AB是O的直径,OPD90,PDCD,CD8,PD2设O的半径为r,则ODr,OPOAAPr2,在RtODP中,OPD90,OD2OP2+PD2,即r2(r2)2+22,解得r1,即O的半径为1
21、【点睛】本题主要考查了垂径定理,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题20、(1),;(2)4500人;(3)【分析】(1)根据条形统计图和扇形统计图的信息,即可求解;(2)由小区总人数使用过“共享单车”的百分比,即可得到答案;(3)根据题意,列出表格,再利用概率公式,即可求解【详解】(1)5025=200(人),200(1-30-25-20)=50(人),36030=108,答:这次被调查的总人数是200人,“:了解但不使用”的人数是50人,“:不了解”所占扇形统计图的圆心角度数为108故答案是:,;(2)(25+20)=(人),答:估计使用过“共享单车”的大约有人;(3)
22、列表如下:小张小李黄色蓝色绿色黄色(黄色,黄色)(黄色,蓝色)(黄色,绿色)蓝色(蓝色,黄色)(蓝色,蓝色)(蓝色,绿色)绿色(绿色,黄色)(绿色,蓝色)(绿色,绿色)由列表可知:一共有种等可能的情况,两人骑同一种颜色有三种情况:(黄色,黄色),(蓝色,蓝色),(绿色,绿色)【点睛】本题主要考查扇形统计图和条形统计图以及简单事件的概率,列出表格,得到事件的等可能的情况数,是解题的关键21、(1)(1,0),E、D、;(2);(3)【分析】(1)根据定义即可得到点的坐标,过点E作的切线EM,连接OM,利用三角函数求出MEO=30,即可得到点E是的“伴侣点”;根据点F、D、的坐标得到线段长度与线段
23、OE比较即可判定是否是的“伴侣点”;(2)根据题意求出,OGF=60,由点是的“伴侣点”,过点P作的切线PA、PB,连接OP,OB,证明OPG是等边三角形,得到点P应在线段PG上,过点P作PHx轴于H,求出点P的横坐标是-,由此即可得到点P的横坐标m的取值范围;(3)设点(x,-2x+6),P(m,n),根据派生点的定义得到3m+n=6,由此得到点P在直线y=-3x+6上,设直线y=-3x+6与x轴交于点A,与y轴交于点B,过点O作OHAB于H,交于点C,求出AB的长,再根据面积公式求出OH即可得到答案.【详解】(1), 点的派生点坐标为(1,0),E(0,-2),OE=2,过点E作的切线EM
24、,连接OM,OM=1,OE=2,OME=90,sinMEO=,MEO=30,而在的左侧也有一个切点,使得组成的角等于30,点E是的“伴侣点”;,OF=OE,点F不可能是的“伴侣点”;,(1,0),点D、是的“伴侣点”,的“伴侣点”有:E、D、,故答案为:(1,0),E、D、;(2)如图,直线l交y轴于点G,OGF=60直线上的点是的“伴侣点”,过点P作的切线PA、PB,且APB=60,连接OP,OB,BOP=30,OBP=90,OB=1,OP=2=OG,OPG是等边三角形,若点P是的“伴侣点”,则点P应在线段PG上,过点P作PHx轴于H,POH=90-60=30,OP=2,PH=1,OH=,即
25、点P的横坐标是-,当直线上的点是的“伴侣点”时的取值范围是;(3)设点(x,-2x+6),P(m,n),根据题意得:m+n=x,m-n=-2x+6,3m+n=6,即n=-3m+6,点P坐标为(m,-3m+6),点P在直线y=-3x+6上,设直线y=-3x+6与x轴交于点A,与y轴交于点B,过点O作OHAB于H,交于点C,如图,则A(2,0),B(0,6),,即点P与上任意一点距离的最小值为.【点睛】此题考查圆的性质,切线长定理,切线的性质,等腰三角形的性质,锐角三角函数,特殊角的三角函数值,勾股定理,正确掌握各知识点是解题的关键.22、(1);(2)【解析】试题分析:(1)根据题意,将y=1代入一次函数的解析式,求出x的值,得到A点的坐标,再利用反比例函数的坐标特征求出反比例函数的解析式;(2)根据A、B点关于原点对称,可求出B点的坐标及线段AB的长度,设出平移后的直线解析式,根据平行线间的距离,由三角形的面积求出关于b的一元一次方程即可求解.试题解析:(1)令一次函数y=x中y=1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乳制品批发购销合同范本
- 企业入驻股权协议
- 企业分家协议书
- 产业园租赁合同样本
- 2024-2030年饮料包装项目可行性研究咨询报告
- 2024-2030年食品甜味添加剂行业市场深度分析及发展策略研究报告
- 2024-2030年陡坡屋面材料行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年防栓塞袜行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年门帘行业市场发展分析及投资融资策略研究报告
- 2024-2030年铌行业市场现状供需分析及投资评估规划分析研究报告
- 公务员考试行测模拟试题及答案解析3
- 胆囊切除术术后健康饮食宣教
- 学生安全指南-预防、识别和应对危险
- 难治性抑郁症的治疗及护理
- 降低非计划重返手术率PDCA
- 幼儿园教师如何说课
- 心理健康八年级(全一册)第六课+说“不”其实很容易
- 消防安全重大风险隐患专项排查整治2023行动排查自查表
- STM32单片机学习笔记(7):智能环境监测系统
- 姐弟两共同出资买房协议书
- 2023版个人征信模板简版(可编辑-带水印)
评论
0/150
提交评论