2023届江苏省无锡市江阴市南菁高中学实验学校数学九年级第一学期期末综合测试试题含解析_第1页
2023届江苏省无锡市江阴市南菁高中学实验学校数学九年级第一学期期末综合测试试题含解析_第2页
2023届江苏省无锡市江阴市南菁高中学实验学校数学九年级第一学期期末综合测试试题含解析_第3页
2023届江苏省无锡市江阴市南菁高中学实验学校数学九年级第一学期期末综合测试试题含解析_第4页
2023届江苏省无锡市江阴市南菁高中学实验学校数学九年级第一学期期末综合测试试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷

2、和答题卡一并交回。一、选择题(每题4分,共48分)1四边形内接于,点是的内心,点在的延长线上,则的度数为()A56B62C68D482在平面直角坐标系中,将抛物线向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为( )ABCD3如图,菱形ABCD的边AB=20,面积为320,BAD90,O与边AB,AD都相切,AO=10,则O的半径长等于( )A5B6C2D34我们要遵守交通规则,文明出行,做到“红灯停,绿灯行”,小刚每天从家到学校需经过三个路口,且每个路口都安装了红绿灯,每个路口红灯和绿灯亮的时间相同,那么小刚从家出发去学校,他遇到两次红灯的概率是( )ABCD5如图所示,A,B是函

3、数的图象上关于原点O的任意一对对称点,AC平行于y轴,BC平行于x轴,ABC的面积为S,则()AS=1BS=2C1S26在RtABC中,C=90,AB=13,AC=5,则tanA的值为ABCD7如图,在ABC中,点D是在边BC上,且BD2CD,ABa,BCb,那么AD等于()AADabBAD23a23bCADa23bDADa23b8在一个箱子里放有1个自球和2个红球,它们除颜色外其余都相同,从箱子里任意摸出1个球,摸到白球的概率是( )A1BCD9如图,是正方形的外接圆,点是上的一点,则的度数是( )ABCD10两地相距,甲、乙两人从两地出发相向而行,甲先出发.图中表示两人离地的距离与时间的关

4、系,结合图象,下列结论错误的是( )A是表示甲离地的距离与时间关系的图象B乙的速度是C两人相遇时间在D当甲到达终点时乙距离终点还有11如图,相交于点,若,则与的面积之比为( )ABCD12若关于x的一元二次方程有实数根,则实数k的取值范围为A,且B,且CD二、填空题(每题4分,共24分)13若正六边形外接圆的半径为4,则它的边长为_14如图,在平面直角坐标系中,ABC和ABC是以坐标原点O为位似中心的位似图形,且点B(3,1),B(6,2),若点A(5,6),则A的坐标为_.15已知关于 x 的一元二次方程x2+2x-a=0的两个实根为x1,x2,且,则 a的值为 16抛物线的顶点坐标是_17

5、已知,则的值为_.18在一个不透明的口袋中,有大小、形状完全相同,颜色不同的球15个,从中摸出红球的概率为,则袋中红球的个数为_三、解答题(共78分)19(8分)如图所示,AB是O的直径,BD是O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DEAC于E(1)求证:AB=AC;(2)求证:DE为O的切线20(8分)如图,AB是O的直径,C为O上一点,ADCD,(点D在O外)AC平分BAD(1)求证:CD是O的切线;(2)若DC、AB的延长线相交于点E,且DE12,AD9,求BE的长 21(8分)(1)用配方法解方程:x24x+20;(2)如图,在平面直角坐标系中,ABC的顶点均在格点上

6、,将ABC绕原点O逆时针方向旋转90得到A1B1C1请作出A1B1C1,写出各顶点的坐标,并计算A1B1C1的面积22(10分)如图,在ABC中,点D在边AB上,DEBC,DFAC,DE、DF分别交边AC、BC于点E、F,且(1)求的值;(2)联结EF,设=,=,用含、的式子表示23(10分)如图,在直角坐标系中,矩形的顶点、分别在轴和轴正半轴上,点的坐标是,点是边上一动点(不与点、点重合),连结、,过点作射线交的延长线于点,交边于点,且,令,.(1)当为何值时,?(2)求与的函数关系式,并写出的取值范围;(3)在点的运动过程中,是否存在,使的面积与的面积之和等于的面积.若存在,请求的值;若不

7、存在,请说明理由.24(10分)在一个三角形中,如果有一边上的中线等于这条边的一半,那么就称这个三角形为“智慧三角形”(1)如图1,已知、是上两点,请在圆上画出满足条件的点,使为“智慧三角形”,并说明理由;(2)如图2,是等边三角形,以点为圆心,的半径为1画圆,为边上的一动点,过点作的一条切线,切点为,求的最小值;(3)如图3,在平面直角坐标系中,的半径为1,点是直线上的一点,若在上存在一点,使得为“智慧三角形”,当其面积取得最小值时,求出此时点的坐标25(12分)在平面直角坐标系中,抛物线与轴交于点,.(1)若,求的值;(2)过点作与轴平行的直线,交抛物线于点,.当时,求的取值范围.26如图

8、,与关于O点中心对称,点E、F在线段AC上,且AF=CE求证:FD=BE参考答案一、选择题(每题4分,共48分)1、C【分析】由点I是 的内心知 ,从而求得 ,再利用圆内接四边形的外角等于内对角可得答案【详解】点I是 的内心 , 四边形内接于 故答案为:C 【点睛】本题考查了三角形的内心,圆内接四边形的性质,掌握三角形内心的性质和圆内接四边形的外角等于内对角是解题的关键2、B【分析】直接关键二次函数的平移规律“左加右减,上加下减”解答即可.【详解】将抛物线向左平移1个单位,再向下平移1个单位后所得抛物线的表达式为:故选:B【点睛】本题考查的是二次函数的平移,掌握其平移规律是关键,需注意:二次函

9、数平移时必须化成顶点式.3、C【详解】试题解析:如图作DHAB于H,连接BD,延长AO交BD于E菱形ABCD的边AB=20,面积为320,ABDH=32O,DH=16,在RtADH中,AH=12,HB=ABAH=8,在RtBDH中,BD=,设O与AB相切于F,连接AFAD=AB,OA平分DAB,AEBD,OAF+ABE=90,ABE+BDH=90,OAF=BDH,AFO=DHB=90,AOFDBH,OF=2故选C考点:1.切线的性质;2.菱形的性质4、B【分析】画树状图得出所有情况数和遇到两次红灯的情况数,根据概率公式即可得答案【详解】根据题意画树状图如下:共有8种等情况数,其中遇到两次红灯的

10、有3种,则遇到两次红灯的概率是,故选:B【点睛】本题考查利用列表法或树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比;根据树状图得到遇两次红灯的情况数是解题关键5、B【分析】设点A(m,),则根据对称的性质和垂直的特点,可以表示出B、C的坐标,根据坐标关系得出BC、AC的长,从而得出ABC的面积【详解】设点A(m,)A、B关于原点对称B(m,)C(m,)AC=,BC=2m=2故选:B【点睛】本题考查反比例函数和关于原点对称点的求解,解题关键是表示出A、B、C的坐标,从而得出ABC的面积6、D【分析】利用勾股定理即可求得BC的长,然后根据正切的定义即可求解【详解】根据勾股定理可得:

11、BCtanA故选:D【点睛】本题考查了勾股定理和三角函数的定义,正确理解三角函数的定义是关键7、D【解析】利用平面向量的加法即可解答.【详解】解:根据题意得BD23b,ADABBDa23 b.故选D.【点睛】本题考查平面向量的加法及其几何意义,涉及向量的数乘,属基础题.8、C【解析】结合题意求得箱子中球的总个数,再根据概率公式即可求得答案.【详解】依题可得,箱子中一共有球:(个),从箱子中任意摸出一个球,是白球的概率.故答案为:C.【点睛】此题考查了概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比9、C【分析】首先连接OB,OA,由O是正方形ABCD的外接圆,即可求得AOB的度数,

12、又由在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得的度数【详解】解: 连接OB,OA,O是正方形ABCD的外接圆,BOA=90,=BOA=45故选:C【点睛】此题考查了圆周角定理与圆的内接多边形、正方形的性质等知识此题难度不大,注意准确作出辅助线,注意数形结合思想的应用10、C【分析】根据图像获取所需信息,再结合行程问题量间的关系进行解答即可.【详解】解:A. 是表示甲离地的距离与时间关系的图象是正确的;B. 乙用时3小时,乙的速度,903=,故选项B正确;C.设甲对应的函数解析式为y=ax+b,则有: 解得:甲对应的函数解析式为y=-45x+90,设乙对应的函数

13、解析式为y=cx+d,则有: 解得:即乙对应的函数解析式为y=30 x-15则有: 解得:x=1.4h,故C选项错误;D. 当甲到达终点时乙距离终点还有90-401.4=45km,故选项D正确;故答案为C.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意、从图像中获取问题需要的条件以及数形结合的思想的应用是解答本题的关键.11、B【分析】先证明两三角形相似,再利用面积比是相似比的平方即可解出.【详解】ABCD,A=D,B=C,ABODCO,AB=1,CD=2,AOB和DCO相似比为:1:2.AOB和DCO面积比为:1:4.故选B.【点睛】本题考查相似三角形的面积比,关键在于牢记面积比和

14、相似比的关系.12、A【解析】原方程为一元二次方程,且有实数根,k-10且=62-4(k-1)3=48-12k0,解得k4,实数k的取值范围为k4,且k1,故选A二、填空题(每题4分,共24分)13、1【分析】根据正六边形的外接圆半径和正六边形的边长将组成一个等边三角形,即可求解【详解】正六边形的中心角为3606=60,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的外接圆半径等于1,则正六边形的边长是1故答案为:1【点睛】本题考查了正多边形和圆,利用正六边形的外接圆半径和正六边形的边长将组成一个等边三角形得出是解题的关键14、 (2.5,3)【分析】利用点B(3,1),B(

15、6,2)即可得出位似比进而得出A的坐标.【详解】解:点B(3,1),B(6,2),点A(5,6),A的坐标为:(2.5,3).故答案为:(2.5,3).【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心15、1【详解】解:关于 x 的一元二次方程x2+2x-a=0 的两个实根为x1,x2,x1+x2=-2,x1x2=-a,a=116、(2,0) 【分析】直接利用顶点式可知顶点坐标【详解】顶点坐标是(2,0),故答案为:(2,0)【点睛】主要考查了求抛物线顶点坐标的方法17、【分析】设,分别表示

16、出a,b,c,即可求出的值.【详解】设 故答案为【点睛】本题考查了比例的性质,利用参数分别把a,b,c表示出来是解题的关键.18、【分析】等量关系为:红球数:总球数=,把相关数值代入即可求解【详解】设红球有x个,根据题意得:,解得:x=1故答案为1【点睛】用到的知识点为:概率=所求情况数与总情况数之比三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;【分析】(1)连接AD,根据中垂线定理不难求得AB=AC;(2)要证DE为O的切线,只要证明ODE=90即可【详解】(1)连接AD;AB是O的直径,ADB=90又DC=BD,AD是BC的中垂线AB=AC(2)连接OD;OA=OB,CD

17、=BD,ODACODE=CED又DEAC,CED=90ODE=90,即ODDEDE是O的切线考点:切线的判定20、(1)证明见解析;(2)BE的长是【分析】(1)连接OC,根据条件先证明OCAD,然后证出OCCD即可;(2)先利用勾股定理求出AE的长,再根据条件证明ECOEDA,然后利用对应边成比例求出OC的长,再根据BE=AE2OC计算即可【详解】(1)连接OC,AC平分DAB,DAC=CAB,OC=OA,OAC=OCA,DAC=OCA,OCAD,ADCD,OCCD,OC为O半径,CD是O的切线(2)在RtADE中,由勾股定理得:AE=15,OCAD,ECOEDA,解得:OC=,BE=AE2

18、OC=152=,答:BE的长是21、(1)x12+,x22;(2)A1(1,1),B1(4,0),C1(4,2),A1B1C1的面积222【分析】(1)利用配方法得到(x2)22,然后利用直接开平方法解方程;(2)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1;然后写出A1B1C1各顶点的坐标,利用三角形面积公式计算A1B1C1的面积【详解】解:(1)移项,得x24x2,配方,得x24x+42+4,即(x2)22,所以x2所以原方程的解为x12+,x22;(2)如图,A1B1C1为所作;A1(1,1),B1(4,0),C1(4,2),A1B1C1的面积222【点睛】本题主要考察

19、作图-旋转变换、三角形的面积公式和解方程,解题关键是熟练掌握计算法则.22、 (1)见解析;(2)=【解析】(1)由 得,由DE/BC得,再由DF/AC即可得;(2)根据已知可得 , ,从而即可得.【详解】(1) , ,DE/BC, 又DF/AC, ;(2),与方向相反 , ,同理: ,又,.23、(1)当时,;(2)();(3)存在,.【分析】(1)由题意可知,当OPAP时,即,于是解得x值;(2)根据已知条件利用两角对应相等两个三角形相似,证明三角形OCM和三角形PCO相似,得出对应边成比例即可得出结论;(3)假设存在x符合题意. 过作于点,交于点,由与面积之和等于的面积,.然后求出ED,

20、EF的长,再根据三角形相似:,求出MP的长,进而由上题的关系式求出符合条件的x.【详解】解:(1)证明三角形OPC和三角形PAB相似是解决问题的关键,由题意知,BCOA,,.,,即,解得(不合题意,舍去). 当时,;(2)由题意可知,.(已知),. ,对应边成比例:,即. ,因为点是边上一动点(不与点、点重合),且满足,所以的取值范围是.(3)假设存在符合题意. 如图所示,过作于点,交于点, 则.与面积之和等于的面积,. . ,. . 即,解得. 由(2)得,所以. 解得(不合题意舍去). 在点的运动过程中存在x,,使与面积之和等于的面积,此时.【点睛】1.相似三角形的判定与性质;2.矩形性质

21、.24、(1)见解析;(2);(1)或【分析】(1)连接AO并且延长交圆于,连接AO并且延长交圆于,即可求解;(2)根据MN为的切线,应用勾股定理得,所以OM最小时,MN最小;根据垂线段最短,得到当M和BC中点重合时,OM最小为,此时根据勾股定理求解DE,DE和MN重合,即为所求;(1)根据“智慧三角形”的定义可得为直角三角形,根据题意可得一条直角边为1,当写斜边最短时,另一条直角边最短,则面积取得最小值,由垂线段最短可得斜边最短为1,根据勾股定理可求得另一条直角边,再根据三角形面积可求得斜边的高,即点P的横坐标,再根据勾股定理可求点P的纵坐标,从而求解【详解】(1)如图1,点和均为所求理由:连接、并延长,分别交于点、,连

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论