2023届浙江省绍兴市嵊州市数学九年级第一学期期末统考试题含解析_第1页
2023届浙江省绍兴市嵊州市数学九年级第一学期期末统考试题含解析_第2页
2023届浙江省绍兴市嵊州市数学九年级第一学期期末统考试题含解析_第3页
2023届浙江省绍兴市嵊州市数学九年级第一学期期末统考试题含解析_第4页
2023届浙江省绍兴市嵊州市数学九年级第一学期期末统考试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如果(m+2)x|m|+mx10是关于x的一元二次方程,那么m的值为()A2或2B2C2D02在平面直角坐标系中,点(-2,6)关于原点对称的点的坐标是( )A(2,-6)B

2、(-2,6)C(-6,2)D(-6,2)3如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M,O为BD的中点,则下列结论:AME=90;BAF=EDB;BMO=90;MD=2AM=4EM;其中正确结论的是( )ABCD4如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“治”相对的面上的汉字是( )A全B面C依D法5如图1,点P从ABC的顶点A出发,沿ABC匀速运动,到点C停止运动点P运动时,线段AP的长度y与运动时间x的函数关系如图2所示,其中D为曲线部分的最低点,则ABC的面积是()A10B12C20D246在四张完全相同的卡片

3、上分别画有等腰三角形、矩形、菱形、圆,现从中随机抽取一张,卡片上的图形恰好是中心对称图形的概率是()ABCD17设有12只型号相同的杯子,其中一等品7只,二等品2只,三等品3只。则从中任意取一只,是二等品的概率等于 ( )ABCD8如图,在O中,弦AB的长为8,圆心O到AB的距离为3,则O的半径为()A10B8C7D59常胜村2017年的人均收入为12000元,2019年的人均收入为15000元,求人均收入的年增长率若设人均收入的年增长率为x,根据题意列方程为( )ABCD10下列图形中,既是轴对称图形,又是中心对称图形的是( )A正三角形B正五边形C正六边形D正七边形二、填空题(每小题3分,

4、共24分)11如图,身高1.6米的小丽在阳光下的影长为2米,在同一时刻,一棵大树的影长为8米,则这棵树的高度为_米12甲、乙两名同学参加“古诗词大赛”活动,五次比赛成绩的平均分都是85分,如果甲比赛成绩的方差为S甲2=16.7,乙比赛成绩的方差为S乙2=28.3,那么成绩比较稳定的是_(填甲或乙)13关于x的一元二次方程x2+4x2k0有实数根,则k的取值范围是_14如图,在平面直角坐标系中,点A是x轴正半轴上一点,菱形OABC的边长为5,且tanCOA=,若函数的图象经过顶点B,则k的值为_15如图,四边形是半圆的内接四边形,是直径,.若,则的度数为_.16如果3a4b(a、b都不等于零),

5、那么a+bb_17如图,P是抛物线y=x2+x+2在第一象限上的点,过点P分别向x轴和y轴引垂线,垂足分别为A,B,则四边形OAPB周长的最大值为_18当_时,关于的一元二次方程有两个实数根.三、解答题(共66分)19(10分)如图,在中,是边上任意一点(点与点,不重合),以为一直角边作,连接,.若和是等腰直角三角形.(1)猜想线段,之间的数量关系及所在直线的位置关系,直接写出结论;(2)现将图中的绕着点顺时针旋转,得到图,请判断(1)中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由.20(6分)如图,一艘船由A港沿北偏东65方向航行km至B港,然后再沿北偏西40方向航行至C港,C港

6、在A港北偏东20方向.求:(1)C的度数;(2)A,C两港之间的距离为多少km.21(6分)某水果商场经销一种高档水果,原价每千克25元,连续两次涨价后每千克水果现在的价格为36元(1)若每次涨价的百分率相同求每次涨价的百分率;(2)若进价不变,按现价售出,每千克可获利15元,但该水果出现滞销,商场决定降价m元出售,同时把降价的幅度m控制在的范围,经市场调查发现,每天销售量 (千克)与降价的幅度m(元)成正比例,且当时, 求与 m的函数解析式;(3)在(2)的条件下,若商场每天销售该水果盈利元,为确保每天盈利最大,该水果每千克应降价多少元?22(8分)如图,已知矩形 ABCD在线段 AD 上作

7、一点 P,使DPC BPC (要求:用尺规作图,保留作图痕迹,不写作法和证明)23(8分)某宾馆有客房间供游客居住,当每间客房的定价为每天元时,客房恰好全部住满;如果每间客房每天的定价每增加元,就会减少间客房出租设每间客房每天的定价增加元,宾馆出租的客房为间求:关于的函数关系式;如果某天宾馆客房收入元,那么这天每间客房的价格是多少元?24(8分)如图,在平面直角坐标系中,直线l1与x轴交于点A,与y轴交于点B(0,4),OAOB,点C(3,n)在直线l1上.(1)求直线l1和直线OC的解析式;(2)点D是点A关于y轴的对称点,将直线OC沿y轴向下平移,记为l2,若直线l2过点D,与直线l1交于

8、点E,求BDE的面积.25(10分)如图,已知抛物线经过坐标原点和轴上另一点,顶点的坐标为矩形的顶点与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=1(1)求该抛物线所对应的函数关系式;(2)将矩形以每秒个单位长度的速度从图1所示的位置沿轴的正方向匀速平行移动,同时一动点也以相同的速度从点出发向匀速移动,设它们运动的时间为秒,直线与该抛物线的交点为(如图2所示)当,判断点是否在直线上,并说明理由;设P、N、C、D以为顶点的多边形面积为,试问是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由26(10分)如图,在正方形ABCD中,点E在边CD上(不与点C,D重合),连接AE

9、,BD交于点F.(1)若点E为CD中点,AB2,求AF的长.(2)若AFB2,求的值.(3)若点G在线段BF上,且GF2BG,连接AG,CG,设x,四边形AGCE的面积为,ABG的面积为,求的最大值.参考答案一、选择题(每小题3分,共30分)1、B【分析】根据一元二次方程的定义可得:|m|=1,且m+10,再解即可【详解】解:由题意得:|m|=1,且m+10,解得:m=1故选:B【点睛】此题主要考查了一元二次方程的定义,关键是掌握“未知数的最高次数是1”;“二次项的系数不等于0”2、A【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:点A(-2,6)关于原点

10、对称的点的坐标是(2,-6),故选:A【点睛】本题考查了关于原点对称的点的坐标,利用关于原点对称的点的横坐标互为相反数,纵坐标互为相反数是解题关键3、D【解析】根据正方形的性质可得AB=BC=AD,ABC=BAD=90,再根据中点定义求出AE=BF,然后利用“边角边”证明ABF和DAE全等,根据全等三角形对应角相等可得BAF=ADE,然后求出ADE+DAF=BAD=90,从而求出AMD=90,再根据邻补角的定义可得AME=90,从而判断正确;根据中线的定义判断出ADEEDB,然后求出BAFEDB,判断出错误;根据直角三角形的性质判断出AED、MAD、MEA三个三角形相似,利用相似三角形对应边成

11、比例可得,然后求出MD=2AM=4EM,判断出正确,设正方形ABCD的边长为2a,利用勾股定理列式求出AF,再根据相似三角形对应边成比例求出AM,然后求出MF,消掉a即可得到AM=MF,判断出正确;过点M作MNAB于N,求出MN、NB,然后利用勾股定理列式求出BM,过点M作GHAB,过点O作OKGH于K,然后求出OK、MK,再利用勾股定理列式求出MO,根据正方形的性质求出BO,然后利用勾股定理逆定理判断出BMO=90,从而判断出正确【详解】在正方形ABCD中,AB=BC=AD,ABC=BAD=90,E、F分别为边AB,BC的中点,AE=BF=BC,在ABF和DAE中, ,ABFDAE(SAS)

12、,BAF=ADE,BAF+DAF=BAD=90,ADE+DAF=BAD=90,AMD=180-(ADE+DAF)=180-90=90,AME=180-AMD=180-90=90,故正确;DE是ABD的中线,ADEEDB,BAFEDB,故错误;BAD=90,AMDE,AEDMADMEA,AM=2EM,MD=2AM,MD=2AM=4EM,故正确;设正方形ABCD的边长为2a,则BF=a,在RtABF中,AF= BAF=MAE,ABC=AME=90,AMEABF, ,即,解得AM= MF=AF-AM=,AM=MF,故正确;如图,过点M作MNAB于N,则 即 解得MN=,AN=,NB=AB-AN=2a

13、-=,根据勾股定理,BM=过点M作GHAB,过点O作OKGH于K,则OK=a-=,MK=-a=,在RtMKO中,MO=根据正方形的性质,BO=2a,BM2+MO2= BM2+MO2=BO2,BMO是直角三角形,BMO=90,故正确;综上所述,正确的结论有共4个故选:D【点睛】本题考查了正方形的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理的应用,勾股定理逆定理的应用,综合性较强,难度较大,仔细分析图形并作出辅助线构造出直角三角形与相似三角形是解题的关键4、C【分析】首先将展开图折叠,即可得出与汉字“治”相对的面上的汉字.【详解】由题意,得与汉字“治”相对的面上的汉字是“依”,故

14、答案为C.【点睛】此题主要考查对正方体展开图的认识,熟练掌握,即可解题.5、B【解析】过点A作AMBC于点M,由题意可知当点P运动到点M时,AP最小,此时长为4,观察图象可知AB=AC=5,BM=3,BC=2BM=6,SABC=12,故选B.【点睛】本题考查了动点问题的函数图象,根据已知和图象能确定出AB、AC的长,以及点P运动到与BC垂直时最短是解题的关键.6、C【分析】在等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,直接利用概率公式求解即可求得答案【详解】等腰三角形、矩形、菱形、圆中是中心对称图形的有矩形、菱形、圆,现从中随机抽取一张,卡片上画的图形恰好是中心对称图形的概率

15、是:故选:C【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=也考查了中心对称图形的定义7、B【分析】让二等品数除以总产品数即为所求的概率【详解】解:现有12只型号相同的杯子,其中一等品7只,二等品2只,三等品3只,从中任意取1只,可能出现12种结果,是二等品的有2种可能,二等品的概率故选:B【点睛】本题主要考查了概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率8、D【分析】根据垂径定理可得出AE的值,再根据勾股定理即可求出答案【详解】解:OEAB,AE=BE=4

16、,故选:D【点睛】本题考查的知识点是垂径定理,根据垂径定理得出AE的值是解此题的关键9、D【分析】根据“每年的人均收入上一年的人均收入(1年增长率)”即可得【详解】由题意得:2018年的人均收入为元2019年的人均收入为元则故选:D【点睛】本题考查了列一元二次方程,理解题意,正确找出等式关系是解题关键10、C【分析】根据轴对称图形与中心对称图形的概念求解即可【详解】A、此图形不是中心对称图形,是轴对称图形,故此选项错误; B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形既是中心对称图形,又是轴对称图形,故此选项正确;D、此图形不是中心对称图形,是轴对称图形,故此选项错误故选:

17、C【点睛】本题主要考查了轴对称图形与中心对称图形,掌握好中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合二、填空题(每小题3分,共24分)11、6.4【分析】根据平行投影,同一时刻物长与影长的比值固定即可解题.【详解】解:由题可知:,解得:树高=6.4米.【点睛】本题考查了投影的实际应用,属于简单题,熟悉投影概念,列比例式是解题关键.12、甲【分析】【详解】S甲2=16.7,S乙2=28.3,S甲2S乙2,甲的成绩比较稳定,故答案为甲13、k1【分析】根据判别式的意义得到41+8k0,然后解不等式即可【

18、详解】一元二次方程x1+4x1k0有实数根,41+8k0,解得,k1故答案为:k1【点睛】此题考查了根的判别式,一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(1)=0方程有两个相等的实数根;(3)0方程没有实数根14、1【分析】作BDx轴于点D,如图,根据菱形的性质和平行线的性质可得BAD=COA,于是可得,在RtABD中,由AB=5则可根据勾股定理求出BD和AD的长,进而可得点B的坐标,再把点B坐标代入双曲线的解析式即可求出k【详解】解:作BDx轴于点D,如图,菱形OABC的边长为5,AB=OA=5,ABOC,BAD=COA,在RtABD中,设BD=3x,AD=4x

19、,则根据勾股定理得:AB=5x=5,解得:x=1,BD=3,AD=4,OD=9,点B的坐标是(9,3),的图象经过顶点B,k=39=1故答案为:1【点睛】本题考查了菱形的性质、解直角三角形、勾股定理和待定系数法求函数的解析式等知识,属于常考题型,熟练应用上述知识、正确求出点B的坐标是解题的关键15、50【分析】连接AC,根据圆内接四边形的性质求出,再利用圆周角定理求出,计算即可.【详解】解:连接AC,四边形ABCD是半圆的内接四边形,DC=CBAB是直径故答案为:50.【点睛】本题考查的知识点有圆的内接四边形的性质以及圆周角定理,熟记知识点是解题的关键.16、73【解析】直接利用已知把a,b用

20、同一未知数表示,进而计算得出答案【详解】3a4b(a、b都不等于零),设a4x,则b3x,那么a+ba=3x+4x3x=73故答案为:73【点睛】此题主要考查了比例的性质,正确表示出a,b的值是解题关键17、1【分析】设P(x,y)(2x0,y0),根据矩形的周长公式得到C=-2(x-1)2+1根据二次函数的性质来求最值即可【详解】解:y=x2+x+2,当y=0时,x2+x+2=0即(x2)(x+1)=0,解得 x=2或x=1故设P(x,y)(2x0,y0),C=2(x+y)=2(xx2+x+2)=2(x1)2+1当x=1时,C最大值=1即:四边形OAPB周长的最大值为1【点睛】本题主要考查二

21、次函数的最值以及二次函数图象上点的坐标特征设P(x,y)(2x0,y0),根据矩形的周长公式得到C=2(x1)2+1最后根据根据二次函数的性质来求最值是关键18、【分析】根据一元二次方程根与系数的关系即可得出答案.【详解】关于的一元二次方程有两个实数根解得:故答案为:【点睛】本题考查的是一元二次方程根与系数的关系,当时,有两个实数根;当时,没有实数根.三、解答题(共66分)19、(1)BE=AD,BEAD ;(2)BE=AD,BEAD仍然成立,理由见解析【分析】(1)由CA=CB,CE=CD,ACB=90易证BCEACD,所以BE=AD,BEC=ADC,又因为EBC+BEC=90,所以EBC+

22、ADC=90,即BEAD;(2)成立设BE与AC的交点为点F,BE与AD的交点为点G,易证ACDBCE得到AD=BE,CAD=CBE再根据等量代换得到AFG+CAD=90即BEAD【详解】(1)BE=AD,BEAD;在BCE和ACD中,BCEACD(SAS),BE=AD,BEC=ADC,EBC+BEC=90,EBC+ADC=90,BEAD.故答案为:BE=AD,BEAD.(2)BE=AD,BEAD仍然成立 设BE与AC的交点为F,BE与AD的交点为G,如图,.在和中,. ,BEAD【点睛】本题考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟练掌握性质定理是解题的关键.20、(

23、1)C=60(2)AC=【分析】(1)根据方位角的概念确定ACB=40+20=60;(2)AB=30 ,过B作BEAC于E,解直角三角形即可得到结论【详解】解:(1)如图,在点C处建立方向标根据题意得,AFCMBDACM=FAC, BCM=DBCACB=ACM+BCM=40+20=60,(2)AB=30 ,过B作BEAC于E,AEB=CEB=90,在RtABE中,ABE=45,AB=30,AE=BE=AB=30km,在RtCBE中,ACB=60,CE=BE=10 km,AC=AE+CE=30+10 ,A,C两港之间的距离为(30+10)km,【点睛】本题考查了解直角三角形的应用,方向角问题,三

24、角形的内角和,是基础知识比较简单21、(1)20%;(2)(3)商场为了每天盈利最大,每千克应降价7元【分析】(1)设每次涨价的百分率为x,根据题意列出方程即可;(2)根据题意列出函数表达式即可;(3)根据等量关系列出函数解析式,然后根据解析式的性质,求出最值即可【详解】解:(1)设每次涨价的百分率为x,根据题意得:25(1+x)236,解得:(不合题意舍去)答:每次涨价的百分率20%;(2)设,把,代入得,k=30,y与m的函数解析式为;(3)依题有,抛物线的开口向下,对称轴为,当时,w随m的增大而增大,又,当时,每天盈利最大,答:商场为了每天盈利最大,每千克应降价7元【点睛】本题主要考查了

25、一元二次方程的应用,二次函数的应用,根据题意得出等量关系是解题关键22、详见解析【分析】以为圆心,为半径画弧,以为直径画弧,两弧交于点,连接并延长交于点,利用全等三角形和角平分线的判定和性质可得【详解】解:如图,即为所作图形:DPC BPC.【点睛】本题是作图复杂作图,作线段垂直平分线,涉及到角平分线的判定和性质,全等三角形的判定和性质,难度中等.23、(1)y=-x+200;(2)这天的每间客房的价格是元或元【解析】(1)根据题意直接写出函数关系式,然后整理即可;(2)用每间房的收入(180+x),乘以出租的房间数(-x+200)等于总收入列出方程求解即可.【详解】(1)设每间客房每天的定价

26、增加x元,宾馆出租的客房为y间,根据题意,得:y=200-4,y=-x+200;(2)设每间客房每天的定价增加x元,根据题意,得(180+x)(-x+200)=38400,整理后,得x2-320 x+6000=0,解得x1=20,x2=300,当x=20时,x+180=200(元),当x=300时,x+180=480(元),答:这天的每间客房的价格是200元或480元【点睛】本题主要考查一元二次方程的应用,列一元二次方程,用因式分解法解一元二次方程,解题关键在于根据题意准确列出一元二次方程.24、 (1)直线I1的解析式:y2x+4,直线OC解析式yx;(2)SBDE16.【分析】(1)根据题

27、意先求A的坐标,然后待定系数就AB解析式,把点C的坐标代入,可得n,即可求得直线OC解析式;(2)根据对称性先去D的坐标,根据直线平移,k不变,可求DE解析式,然后求E的坐标,即可求出面积.【详解】解:(1)点B(0,4),OAOB,OAOB2,A(2,0),设OA解析式ykx+b,解得:,直线I1的解析式:y2x+4,C(3,n)在直线l1上,n32+4n2C(3,2)设OC的解析式:yk1x23k1k1,直线OC解析式yx;(2)D点与A点关于y轴对称D(2,0)设DE解析式yx+b,02+b,b,DE解析式yx,当x0,y,解得:,E(4,4),SBDE(2+2)(4+4)16.【点睛】本题考查了两条直线相交与平行问题,用待定系数法解一次函数,一次函数的性质,关键是找出点的坐标25、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论