2023届浙江省台州市名校九年级数学第一学期期末教学质量检测试题含解析_第1页
2023届浙江省台州市名校九年级数学第一学期期末教学质量检测试题含解析_第2页
2023届浙江省台州市名校九年级数学第一学期期末教学质量检测试题含解析_第3页
2023届浙江省台州市名校九年级数学第一学期期末教学质量检测试题含解析_第4页
2023届浙江省台州市名校九年级数学第一学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1下列说法正确的是()A“清明时节雨纷纷”是必然事件B要了解路边行人边步行边低头看手机的情况,可采取对在路边行走的学生随机发放问卷的方式进行调查C做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55D射击运动员甲、乙

2、分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较好2O是半径为1的圆,点O到直线L的距离为3,过直线L上的任一点P作O的切线,切点为Q;若以PQ为边作正方形PQRS,则正方形PQRS的面积最小为( )A7B8C9D103抛物线y2(x3)2+2的顶点坐标是()A(3,2)B(3,2)C(3,2)D(3,2)4圆的直径是13cm,如果圆心与直线上某一点的距离是6.5cm,那么该直线和圆的位置关系是()A相离B相切C相交D相交或相切5下面四个图形分别是绿色食品、节水、节能和回收标志,在这四个标志中,是中心对称图形的是( )ABCD6如图,A、C、B是O上三点,若AOC=40,

3、则ABC的度数是( )A10B20C40D807将半径为5的圆形纸片,按如图方式折叠,若和都经过圆心,则图中阴影部分的面积是( )ABCD8关于x的一元二次方程(m2)x2(2m1)xm20有两个不相等的正实数根,则m的取值范围是()AmBm且m2Cm2Dm29如图,在中,垂足为点,一直角三角板的直角顶点与点重合,这块三角板饶点旋转,两条直角边始终与边分别相交于,则在运动过程中,与的关系是( )A一定相似B一定全等C不一定相似D无法判断10在RtABC中,C90,若斜边AB是直角边BC的3倍,则tanB的值是( )AB3CD211下列事件中,属于必然事件的是( )A2020年的除夕是晴天B太阳

4、从东边升起C打开电视正在播放新闻联播D在一个都是白球的盒子里,摸到红球12如图,点A,B,C是O上的三点,若BOC=50,则A的度数是()A25B20C80D100二、填空题(每题4分,共24分)13再读教材:如图,钢球从斜面顶端静止开始沿斜面滚下,速度每秒增加1.5m/s,在这个问题中,距离=平均速度时间t,其中是开始时的速度,是t秒时的速度.如果斜面的长是18m,钢球从斜面顶端滚到底端的时间为_s.14抛物线y=x2+bx+c的部分图象如图所示,若y0,则x的取值范围是_15甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步560米,先到终点的人原地休息已知甲先出发2秒在跑步过程中,甲、

5、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,则a=_.16飞机着陆后滑行的距离y(m)关于滑行时间t(s)的函数关系式是y60tt2,在飞机着陆滑行中,最后2s滑行的距离是_m17方程的解是_18如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),余下的部分种上草坪要使草坪的面积为540m2,则道路的宽为 三、解答题(共78分)19(8分)(1)如图1,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DFBE,求证:CECF;(2)如图2,在正方形ABCD中,E是AB上一点,G是AD上一点,如果GCE45,请你利用(1)的结论证明:GEBE

6、GD;(3)运用(1)(2)解答中所积累的经验和知识,完成下题:如图3,在直角梯形ABCD中,ADBC(BCAD),B90,ABBC,E是AB上一点,且DCE45,BE4,DE=10, 求直角梯形ABCD的面积20(8分)如图,于点是上一点,是以为圆心,为半径的圆是上的点,连结并延长,交于点,且(1)求证:是的切线(证明过程中如可用数字表示的角,建议在图中用数字标注后用数字表示);(2)若的半径为5,求线段的长21(8分)如图,矩形ABCD中,AD=5,AB=7,点E为DC上一个动点,把ADE沿AE折叠,当点D的对应点D落在ABC的角平分线上时,DE的长为_22(10分) “共和国勋章”是中华

7、人民共和国的最高荣誉勋章,在2019年获得“共和国勋章”的八位杰出人物中,有于敏、孙家栋、袁隆平、黄旭华四位院士.如图是四位院士(依次记为、).为让同学们了解四位院士的贡献,老师设计如下活动:取四张完全相同的卡片,分别写上、四个标号,然后背面朝上放置,搅匀后每个同学从中随机抽取一张,记下标号后放回,老师要求每位同学依据抽到的卡片上的标号查找相应院士的资料,并做成小报.(1)班长在四种卡片中随机抽到标号为C的概率为_.(2)请用画树状图或列表的方法求小明和小华查找不同院士资料的概率.23(10分)在“书香校园”活动中,某校为了解学生家庭藏书情况,随机抽取本校部分学生进行调查,并绘制成部分统计图表

8、如下:类别家庭藏书m本学生人数A0m2520B26m50aC51m7550Dm7666根据以上信息,解答下列问题:(1)该调查的样本容量为 ,a ;(2)随机抽取一位学生进行调查,刚好抽到A类学生的概率是 ;(3)若该校有2000名学生,请估计全校学生中家庭藏书不少于76本的人数24(10分)为给邓小平诞辰周年献礼,广安市政府对城市建设进行了整改,如图所示,已知斜坡长60米,坡角(即)为,现计划在斜坡中点处挖去部分斜坡,修建一个平行于水平线的休闲平台和一条新的斜坡(下面两个小题结果都保留根号).(1)若修建的斜坡BE的坡比为:1,求休闲平台的长是多少米?(2)一座建筑物距离点米远(即米),小亮

9、在点测得建筑物顶部的仰角(即)为.点、,在同一个平面内,点、在同一条直线上,且,问建筑物高为多少米?25(12分)如图,射线表示一艘轮船的航行路线,从到的走向为南偏东30,在的南偏东60方向上有一点,处到处的距离为200海里(1)求点到航线的距离(2)在航线上有一点.且,若轮船沿的速度为50海里/时,求轮船从处到处所用时间为多少小时(参考数据:)26先化简,再求代数式的值,其中参考答案一、选择题(每题4分,共48分)1、C【分析】根据随机事件的概念、抽样调查的特点、方差的意义及概率公式分别判断可得【详解】解:A、“清明时节雨纷纷”是随机事件,此选项错误;B、要了解路边行人边步行边低头看手机的情

10、况,采取对在路边行走的学生随机发放问卷的方式进行调查不具代表性,此选项错误;C、做重复试验:抛掷同一枚瓶盖1000次,经过统计得“凸面向上”的频数为550次,则可以由此估计抛掷这枚瓶盖出现“凸面向上”的概率为0.55,正确;D、射击运动员甲、乙分别射击10次且击中环数的方差分别是0.5和1.2,则运动员甲的成绩较稳定,此选项错误;2、B【分析】连接OQ、OP,作于H,如图,则OH=3,根据切线的性质得,利用勾股定理得到,根据垂线段最短,当OP=OH=3时,OP最小,于是PQ的最小值为,即可得到正方形PQRS的面积最小值1【详解】解: 连接OQ、OP,作于H,如图,则OH=3,PQ 为的切线,在

11、Rt中,当OP最小时,PQ最小,正方形PQRS的面积最小,当OP=OH=3时,OP最小,所以PQ的最小值为,所以正方形PQRS的面积最小值为1故选B3、B【分析】根据ya(xh)2+k,顶点坐标是(h,k)可得答案【详解】解:抛物线y2(x3)2+2的顶点坐标是(3,2),故选:B【点睛】本题考查二次函数的性质;熟练掌握二次函数由解析式求顶点坐标的方法是解题的关键4、D【分析】比较圆心到直线距离与圆半径的大小关系,进行判断即可.【详解】圆的直径是13cm,故半径为6.5cm. 圆心与直线上某一点的距离是6.5cm,那么圆心到直线的距离可能等于6.5cm也可能小于6.5cm,因此直线与圆相切或相

12、交.故选D.【点睛】本题主要考查直线与圆的位置关系,需注意圆的半径为6.5cm,那么圆心与直线上某一点的距离是6.5cm是指圆心到直线的距离可能等于6.5cm也可能小于6.5cm.5、D【分析】根据中心对称图形的定义:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,解答即可【详解】解:A、不符合中心对称图形的定义,因此不是中心对称图形,故A选项错误;B、不符合中心对称图形的定义,因此不是中心对称图形,故B选项错误;C、不符合中心对称图形的定义,因此不是中心对称图形,故C选项错误;D、符合中心对称图形的定义,因此是中心对称图形,故D选项正确;故

13、答案选D【点睛】本题考查了中心对称图形的概念,理解中心对称图形的概念是解题关键6、B【详解】根据同一弧所对的圆周角的度数等于它所对圆心角度数的一半,所以ACB的度数等于AOB的一半,即故选B考点:同一弧所对的圆周角与它所对圆心角的关系.7、B【解析】如图(见解析),先利用翻折的性质、直角三角形的性质求出的度数,再根据垂径定理、等腰三角形的性质得出度数,从而得出的度数,最后根据翻折的性质得出,利用扇形的面积公式即可得【详解】如图,过点O作,并延长OD交圆O与点E,连接OA、OB、OC(垂径定理)由翻折的性质得(等腰三角形的三线合一)同理可得故选:B【点睛】本题考查了垂径定理、翻折的性质、扇形的面

14、积公式等知识点,利用翻折的性质得出的度数是解题关键8、D【解析】试题分析:根据题意得且=,解得且,设方程的两根为a、b,则=,而,即,m的取值范围为故选D考点:1根的判别式;2一元二次方程的定义9、A【分析】根据已知条件可得出,再结合三角形的内角和定理可得出,从而可判定两三角形一定相似【详解】解:由已知条件可得,继而可得出,故选:A【点睛】本题考查的知识点是相似三角形的判定定理,灵活利用三角形内角和定理以及余角定理是解此题的关键10、D【分析】先求出AC,再根据正切的定义求解即可.【详解】设BC=x,则AB=3x,由勾股定理得,AC=,tanB=,故选D考点:1锐角三角函数的定义;2勾股定理1

15、1、B【分析】根据必然事件和随机事件的概念进行分析【详解】A选项:2020年的元旦是晴天,属于随机事件,故不合题意;B选项:太阳从东边升起,属于必然事件,故符合题意;C选项:打开电视正在播放新闻联播,属于随机事件,故不合题意;D选项:在一个都是白球的盒子里,摸到红球,属于不可能事件,故不合题意故选:B【点睛】考查了确定事件和不确定事件(随机事件),确定事件又分为必然事件和不可能事件;注:事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,必然事件和不可能事件都是确定的在一定条件下,可能发生也可能不发生的事件,称为随机事件12、A【解析】BOC=50,A=BO

16、C=25故选:A【点睛】本题考查圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对圆心角的一半.二、填空题(每题4分,共24分)13、【分析】根据题意求得钢球到达斜面低端的速度是1.5t然后由“平均速度时间t”列出关系式,再把s=18代入函数关系式即可求得相应的t的值【详解】依题意得s=t=t2,把s=18代入,得18=t2,解得 t=,或t=-(舍去)故答案为【点睛】本题考查了一元二次方程的应用,根据实际问题列出二次函数关系式解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程14、3x1【解析】试题分析:根据抛物线的对称轴为x=1,一个交点为(1,0),可推出

17、另一交点为(3,0),结合图象求出y0时,x的范围解:根据抛物线的图象可知:抛物线的对称轴为x=1,已知一个交点为(1,0),根据对称性,则另一交点为(3,0),所以y0时,x的取值范围是3x1故答案为3x1考点:二次函数的图象15、1【分析】由图可知,甲2秒跑了8米,可以求出甲的速度,根据乙100秒跑完了全程可知乙的速度,根据经过时间a秒,乙追上了甲,可列出方程解出a的值【详解】解:由图象可得:甲的速度为82=4米/秒,根据乙100秒跑完了全程可知乙的速度为:160100=1.6米/秒,经过a秒,乙追上甲,可列方程,故答案为:1【点睛】本题考查了行程问题中的数量关系的应用,追及问题在生活中的

18、应用,认真分析函数图象的实际意义是解题的关键16、6【分析】先求出飞机停下时,也就是滑行距离最远时,s最大时对应的t值,再求出最后2s滑行的距离.【详解】由题意,y60tt2,(t20)2600,即当t20秒时,飞机才停下来当t=18秒时,y=(1820)2600=594m,故最后2s滑行的距离是600-594=6m故填:6.【点睛】本题考查了二次函数的应用解题时,利用配方法求得t20时,s取最大值,再根据题意进行求解17、【分析】根据提公因式法解一元二次方程直接求解即可【详解】提公因式得解得故答案为【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是关键18、2m【解析】试题

19、分析:本题考查了一元二次方程的应用,这类题目体现了数形结合的思想,如图,需利用平移把不规则的图形变为规则图形,进而即可列出方程,求出答案还要注意根据题意考虑根的合理性,从而确定根的取舍本题可设道路宽为x米,利用平移把不规则的图形变为规则图形,如此一来,所有草坪面积之和就变为了(32-x)(20-x)米2,进而即可列出方程,求出答案试题解析:解:设道路宽为x米(32-x)(20-x)=540解得:x1=2,x2=50(不合题意,舍去)x=2答:设道路宽为2米考点:1、一元二次方程的应用;2、数形结合的思想三、解答题(共78分)19、(1)证明见解析;(2)证明见解析;(3)1.【分析】(1)根据

20、正方形的性质,可直接证明CBECDF,从而得出CE=CF;(2)延长AD至F,使DF=BE,连接CF,根据(1)知BCE=DCF,即可证明ECF=BCD=90,根据GCE=45,得GCF=GCE=45,利用全等三角形的判定方法得出ECGFCG,即GE=GF,即可得出答案GE=DF+GD=BE+GD;(3)过C作CFAD的延长线于点F则四边形ABCF是正方形,设DF=x,则AD=12-x,根据(2)可得:DE=BE+DF=4+x,在直角ADE中利用勾股定理即可求解.【详解】(1)如图1,在正方形ABCD中,BC=CD,B=CDF,BE=DF,CBECDF,CE=CF;(2)如图,延长AD至F,使

21、DF=BE,连接CF,由(1)知CBECDF,BCE=DCF,BCE+ECD=DCF+ECD,即ECF=BCD=90,又GCE=45,GCF=GCE=45,CE=CF,GCE=GCF,GC=GC,ECGFCG,GE=GF,GE=DF+GD=BE+GD;(3)如图:过点C作CFAD于F,ADBC,B90,A90,AB90,FCAD,四边形ABCF是矩形,且ABBC12,四边形ABCF是正方形,AF12,由(2)可得DEDFBE,DE4DF,在ADE中,AE2DA2DE2,(124)2(12DF)2(4DF)2,DF6,AD6,S四边形ABCD (ADBC)AB(612)121【点睛】本题考查了全

22、等三角形的判定和性质以及正方形的性质,解决本题的关键是注意每个题目之间的关系,正确作出辅助线20、(1)见解析;(2)【分析】(1)如图连结,先证得,即可得到,即可得到是的切线;(2)由(1)知:过作于,先证明得到,设,在中,即:解出方程即可求得答案【详解】证明:(1)如图,连结,则,而,即有,故是的切线; (2)由(1)知:过作于,, ,而,由勾股定理,得:,在和中, ,设,在中,即:解得:(舍去),【点睛】本题考查的是相似三角形的应用和切线的性质定理,勾股定理应用,是综合性题目21、或【分析】连接BD,过D作MNAB,交AB于点M,CD于点N,作DPBC交BC于点P,先利用勾股定理求出MD

23、,再分两种情况利用勾股定理求出DE【详解】解:如图,连接BD,过D作MNAB,交AB于点M,CD于点N,作DPBC交BC于点P点D的对应点D落在ABC的角平分线上,MD=PD,设MD=x,则PD=BM=x,AM=AB-BM=7-x,又折叠图形可得AD=AD=5,x2+(7-x)2=25,解得x=3或1,即MD=3或1在RtEND中,设ED=a,当MD=3时,AM=7-3=1,DN=5-3=2,EN=1-a,a2=22+(1-a)2,解得a=,即DE=,当MD=1时,AM=7-1=3,DN=5-1=1,EN=3-a,a2=12+(3-a)2,解得a=,即DE=故答案为:或【点睛】本题主要考查了折

24、叠问题,解题的关键是明确掌握折叠以后有哪些线段是对应相等的22、 (1);(2).【分析】(1)根据概率公式直接求解即可;(2)先画出树状图或列出表格,从中找到符合条件的结果数,再根据概率公式计算可得【详解】解:(1)14=;(2)画出树状图如下:或列表如下: 小明小华由上可知小明和小华随机各抽取一次卡片,一共有16种等可能情况,其中标号不同即查找不同院士资料的情况有12种,即,【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可.,即.23、(1)200,64;(2)0.1;(3)全校学生中家庭藏书不少于76本的

25、人数为660人【分析】(1)根据类别C的人数和所占的百分比即可求出样本容量,用样本容量减去A,C,D所对应的人数即可求出a的值;(2)用类别A所对应的人数除以样本容量即可求出抽到A类学生的概率;(3)用2000乘以藏书不少于76本的概率即可得出答案.【详解】(1)调查的样本容量为5025%200(人),a20020506664(人),故答案为200,64;(2)刚好抽到A类学生的概率是202000.1,故答案为 0.1;(3)全校学生中家庭藏书不少于76本的人数:2000660(人)答:全校学生中家庭藏书不少于76本的人数为660人【点睛】本题主要考查随机事件的概率,用样本估计总体等,能够对统计表和扇形统计图结合是解题的关键.24、(1)m (2)米【解析】分析:(1)由三角函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论