版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题3分,共30分)1如图,PA,PB切O于点A,B,点C是O上一点,且P36,则ACB()A54B72C108D1442以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )ABCD3圆心角为140的扇形的半径为3cm,则这个扇形的面积是()cm1AB3C9D64在下列图形中,不是中心对称图形的是( )A
2、BCD5已知两个相似三角形,其中一组对应边上的高分别是和,那么这两个三角形的相似比为( )ABCD6如图,点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,若OA:OA11:3,则五边形ABCDE和五边形A1B1C1D1E1的面积比是()A1:2B1:3C1:4D1:97若,且,则的值是()A4B2C20D148已知一个菱形的周长是,两条对角线长的比是,则这个菱形的面积是( )ABCD9已知反比例函数的图象经过点,则这个函数的图象位于( )A第二、三象限B第一、三象限C第三、四象限D第二、四象限10函数y=ax2+1与(a0)在同一平面直角坐标系中的图象可能是( )ABCD二、填空
3、题(每小题3分,共24分)11如图,是一个立体图形的三种视图,则这个立体图形的体积为_12若,则的值是_13如图,在平面直角坐标系xOy中,如果抛物线与线段AB有公共点,那么a的取值范围是_14二次函数yax24axc的最大值为4,且图象过点(3,0),则该二次函数的解析式为_15某超市一月份的营业额为36万元,三月份的营业额为48万元,设每月的平均增长率为x,则列出的方程是_.16如图,在平面直角坐标系中,RtABO的顶点O与原点重合,顶点B在x轴上,ABO=90,OA与反比例函数y=的图象交于点D,且OD=2AD,过点D作x轴的垂线交x轴于点C若S四边形ABCD=10,则k的值为 17如图
4、,点是反比例函数图象上的两点,轴于点,轴于点,作轴于点,轴于点,连结,记的面积为,的面积为,则_(填“”或“”或“=”)18如图,反比例函数的图象位于第一、三象限,且图象上的点与坐标轴围成的矩形面积为2,请你在第三象限的图象上取一个符合题意的点,并写出它的坐标_ 三、解答题(共66分)19(10分)如图,抛物线与轴交于、两点,与轴交于点,且,(1)求抛物线的解析式;(2)已知抛物线上点的横坐标为,在抛物线的对称轴上是否存在点,使得的周长最小?若存在,求出点的坐标;若不存在,请说明理由20(6分)计算:|tan30l| + 2sin60otan45.21(6分)小明投资销售一种进价为每件20元的
5、护眼台灯销售过程中发现:每月的销售量y(件)与销售单价x(元/件)之间的关系可近似地看作一次函数y10 x500,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.(1)设小明每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元/件)之间的函数表达式,并确定自变量x的取值范围;(2)当销售单价定为多少元/件时,每月可获得最大利润?每月的最大利润是多少?22(8分)如图,二次函数y=ax2+bx+c过点A(1,0),B(3,0)和点C(4,5)(1)求该二次函数的表达式及最小值(2)点P(m,n)是该二次函数图象上一点当m=4时,求n的值;已知点P到y轴的距离不大于4
6、,请根据图象直接写出n的取值范围23(8分)如图,正方形ABCD的边长为2,点E是AD边上的动点,从点A开始沿AD向D运动以BE为边,在BE的上方作正方形BEFG,EF交DC于点H,连接CG、BH请探究:(1)线段AE与CG是否相等?请说明理由(2)若设AE=x,DH=y,当x取何值时,y最大?最大值是多少?(3)当点E运动到AD的何位置时,BEHBAE?24(8分)如图,函数y1=x+4的图象与函数(x0)的图象交于A(m,1),B(1,n)两点(1)求k,m,n的值;(2)利用图象写出当x1时,y1和y2的大小关系25(10分)如图,在平面直角坐标系xOy中,双曲线与直线y=2x+2交于点
7、A(1,a)求的值;求该双曲线与直线y=2x+2另一个交点B的坐标26(10分)时下正是海南百香果丰收的季节,张阿姨到“海南爱心扶贫网”上选购百香果,若购买2千克“红土”百香果和1千克“黄金”百香果需付80元,若购买1千克“红土”百香果和3千克“黄金”百香果需付115元请问这两种百香果每千克各是多少元?参考答案一、选择题(每小题3分,共30分)1、B【解析】连接AO,BO,P=36,所以AOB=144,所以ACB=72.故选B.2、B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合因此,只有选项B符合条件故选B3、D【解析】试题分析:扇形面积的计算公式为:,
8、故选择D4、C【解析】根据中心对称图形的概念,对各选项分析判断即可得解【详解】解:A、是中心对称图形,故本选项不符合题意;B、是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项符合题意;D、是中心对称图形,故本选项不符合题意故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合5、B【分析】根据相似三角形对应高的比等于相似比,即可得出结论.【详解】解:相似三角形对应高的比等于相似比 相似比=故选B【点睛】此题主要考查了相似三角形的性质,相似三角形对应高的比等于相似比,熟记相关性质是解题的关键.6、D【分析】由点O是五边形ABCDE
9、和五边形A1B1C1D1E1的位似中心,OA:OA1=1:3,可得位似比为1:3,根据相似图形的面积比等于相似比的平方,即可求得答案【详解】点O是五边形ABCDE和五边形A1B1C1D1E1的位似中心,OA:OA11:3,五边形ABCDE和五边形A1B1C1D1E1的位似比为1:3,五边形ABCDE和五边形A1B1C1D1E1的面积比是1:1故选:D【点睛】此题考查了位似图形的性质此题比较简单,注意相似图形的周长的比等于相似比,相似图形的面积比等于相似比的平方7、A【分析】根据比例的性质得到,结合求得的值,代入求值即可【详解】解:由a:b3:4知,所以所以由得到:,解得所以所以故选A【点睛】考
10、查了比例的性质,内项之积等于外项之积若,则8、D【分析】首先可求出菱形的边长,设菱形的两对角线分别为8x,6x,由勾股定理求出x的值,从而可得两条对角线的长,根据菱形的面积等于对角线乘积的一半列式计算即可求解【详解】解:菱形的边长是20cm,菱形的边长=204=5cm,菱形的两条对角线长的比是,设菱形的两对角线分别为8x,6x,菱形的对角线互相平分,对角线的一半分别为4x,3x,由勾股定理得:,解得:x=1,菱形的两对角线分别为8cm,6cm,菱形的面积=cm2,故选:D【点睛】本题考查了菱形的性质、勾股定理,主要理由菱形的对角线互相平分的性质,以及菱形的面积等于对角线乘积的一半9、D【分析】
11、首先将点P的坐标代入确定函数的表达式,再根据k0时,函数图象位于第一、三象限;k0时函数图象位于第二、四象限解答即可【详解】解:反比例函数的图象经过点P(-2,1),k=-20,函数图象位于第二,四象限故选:D【点睛】本题考查了反比例函数图象上的点以及反比例函数图象的性质,掌握基本概念和性质是解题的关键10、B【解析】试题分析:分a0和a0两种情况讨论:当a0时,y=ax2+1开口向上,顶点坐标为(0,1);位于第一、三象限,没有选项图象符合;当a0时,y=ax2+1开口向下,顶点坐标为(0,1);位于第二、四象限,B选项图象符合故选B考点:1.二次函数和反比例函数的图象和性质;2.分类思想的
12、应用二、填空题(每小题3分,共24分)11、【分析】根据该立体图形的三视图可判断该立体图形为圆柱,且底面直径为8,高为8,根据圆柱的体积公式即可得答案【详解】该立体图形的三视图为两个正方形和一个圆,该立体图形为圆柱,且底面直径为8,高为8,这个立体图形的体积为428=128,故答案为:128【点睛】本题考查由三视图判断几何体;利用该几何体的三视图得到该几何体底面半径、高是解题的关键12、【分析】根据等式的性质,可用a表示b,根据分式的性质可得答案【详解】解:由得,b=a,故答案为:【点睛】本题考查了比例的性质,利用等式的性质得出b=a是解题的关键,又利用了分式的性质13、【解析】分别把A、B点
13、的坐标代入得a的值,根据二次函数的性质得到a的取值范围【详解】解:把代入得;把代入得,所以a的取值范围为故答案为【点睛】本题考查二次函数的图象与性质,解题的关键是熟练掌握二次函数的性质14、y4x216x12【解析】抛物线的对称轴为直线x=2,抛物线的顶点坐标为(2,4),又抛物线过点(3,0),解得:a=4,c=12,则抛物线的解析式为y4x216x12.故答案为y4x216x12.【点睛】本题考查用待定系数法求二次函数解析式,解此题的关键在于先根据顶点坐标与函数系数的关系,求得顶点坐标,再用待定系数法求函数解析式即可.15、【分析】主要考查增长率问题,一般用增长后的量=增长前的量(1+增长
14、率),用x表示三月份的营业额即可【详解】依题意得三月份的营业额为,故答案为【点睛】本题考查了一元二次方程的应用中的增长率问题,找到关键描述语,就能找到等量关系,是解决问题的关键16、1【详解】OD=2AD,ABO=90,DCOB,ABDC,DCOABO,S四边形ABCD=10,SODC=8,OCCD=8,OCCD=1,k=1,故答案为117、=【分析】连接OP、OQ,根据反比例函数的几何意义,得到,由OM=AP,OB=NQ,得到,即可得到.【详解】解:如图,连接OP、OQ,则点P、点Q在反比例函数的图像上,四边形OMPA、ONQB是矩形,OM=AP,OB=NQ,;故答案为:=.【点睛】本题考查
15、了反比例函数的几何意义,解题的关键是熟练掌握反比例函数的几何意义判断面积相等.18、满足的第三象限点均可,如(-1,-2)【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值,即S=|k|【详解】解:图象上的点与坐标轴围成的矩形面积为2,|k|=2,反比例函数y=的图象在一、三象限,k0,k=2,此反比例函数的解析式为第三象限点均可,可取:当x=-1时,y=-2综上所述,答案为:满足的第三象限点均可,如(-1,-2)【点睛】本题考查的是反比例函数系数k的几何意义,即过反比例函数图象上任意一点向两坐标轴引垂线,所得矩形的面积为|k|三、解答题(共66分)19、(1);(2)存在
16、,点【分析】(1)由题意先求出A、C的坐标,直接利用待定系数法即可求得抛物线的解析式;(2)根据题意转化,BD的长是定值,要使的周长最小则有点、在同一直线上,据此进行分析求解.【详解】解:(1),点的坐标为.,点的坐标为.把,代入,得,解得.抛物线的解析式为.(2)存在.把代入,解得,点的坐标为.点的横线坐标为.故点的坐标为.如图,设是抛物线对称轴上的一点,连接、,的周长等于,又的长是定值,点、在同一直线上时,的周长最小,由、可得直线的解析式为,抛物线的对称轴是,点的坐标为,在抛物线的对称轴上存在点,使得的周长最小.【点睛】本题考查二次函数图像性质的综合问题,熟练掌握并利用利用待定系数法即可求
17、出二次函数的解析式以及运用数形结合思维分析是解题的关键.20、【分析】将特殊角的三角函数值代入求解即可【详解】原式=|1|+21=1+1=.【点睛】本题考查了特殊角的三角函数值,解答本题的关键是掌握几个特殊角的三角函数值21、 (1)w10 x2700 x10000(20 x32);(2)当销售单价定为32元/件时,每月可获得最大利润,最大利润是2160元【解析】分析:(1)由题意得,每月销售量与销售单价之间的关系可近似看作一次函数,利润=(定价-进价)销售量,从而列出关系式;(2)首先确定二次函数的对称轴,然后根据其增减性确定最大利润即可;详解:(1)由题意,得:w=(x-20)y=(x-2
18、0)(-10 x+500)=-10 x2+700 x-10000,即w=-10 x2+700 x-10000(20 x32). (2)w10 x2700 x1000010(x35)22250.对称轴为:x=35,又a100,抛物线开口向下,当20 x32时,w随着x的增大而增大,当x32时,w最大2160.答:当销售单价定为32元/件时,每月可获得最大利润,最大利润是2160元点睛:二次函数的应用.重点在于根据题意列出函数关系式.22、 (1) y=x22x3,-4;(2)1;4n1【分析】(1)根据题意,设出二次函数交点式,点C坐标代入求出a值,把二次函数化成顶点式即可得到最小值;(2)m=
19、-4,直接代入二次函数表达式,即可求出n的值;由点P到y轴的距离不大于4,得出4m4,结合二次函数图象可知,m=1时,n取最小值,m=-4时,n取最大值,代入二次函数的表达式计算即可【详解】解:(1)根据题意,设二次函数表达式为,点C代入,得,a=1,函数表达式为y=x22x3,化为顶点式得:,x=1时,函数值最小y=-4,故答案为:;-4;(2)当m=4时,n=16+83=1,故答案为:1;点P到y轴的距离为|m|,|m|4,4m4,y=x22x3=(x1)24,在4m4时,当m=1时,有最小值n=-4;当m=-4时,有最大值n=1,4n1,故答案为:4n1【点睛】本题考查了待定系数法求二次
20、函数的表达式,二次函数求最值,二次函数图象和性质的应用,求二次函数的取值范围,掌握二次函数的图象和性质的应用是解题的关键23、(1)AE=CG,见解析;(2)当x=1时,y有最大值,为;(3)当E点是AD的中点时,BEHBAE,见解析.【解析】(1)由正方形的性质可得AB=BC,BE=BG,ABC=EBG=90,由“SAS”可证ABECBG,可得AE=CG;(2)由正方形的性质可得A=D=FEB=90,由余角的性质可得ABE=DEH,可得ABEDEH,可得,由二次函数的性质可求最大值;(3)当E点是AD的中点时,可得AE=1,DH=,可得,且A=FEB=90,即可证BEHBAE【详解】(1)AE=CG,理由如下:四边形ABCD,四边形BEFG是正方形,AB=BC,BE=BG,ABC=EBG=90,ABE=CBG,且AB=BC,BE=BG,ABECBG(SAS),AE=CG;(2)四边形ABCD,四边形BEFG是正方形,A=D=FEB=90,AEB+ABE=90,AEB+DEH=90,ABE=DEH,又A=D,ABEDEH,=,当x=1时,y有最大值为;(3)当E点是AD的中点时,BEHBAE,理由如下:E是AD中点,AE=1,又ABEDEH,又,且DAB=FEB=90,BEHBAE.【点睛】本题是相似形综合题,考查了相似三角形的判定和性质,正方形的性质,二次函数的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年度木结构工程安全风险评估与管控合同
- 二零二五版航空航天设备采购合同集2篇
- 二零二五年度跨境电商物流服务合同变更2篇
- 管理沟通培训
- 二零二五年度货车货运配送承包合同3篇
- 基于2025年度财务预算的合同成本管理与优化2篇
- 地质勘查专用设备制造考核试卷
- 二零二五版环保项目垫资合同范本2篇
- 2025年度木材加工钢材买卖居间合同附带供应链金融方案3篇
- 2025版小学校园广播系统升级合同3篇
- 《电影之创战纪》课件
- 社区医疗抗菌药物分级管理方案
- 开题报告-铸牢中华民族共同体意识的学校教育研究
- 《医院标识牌规划设计方案》
- 夜市运营投标方案(技术方案)
- 电接点 水位计工作原理及故障处理
- 国家职业大典
- 2024版房产代持协议书样本
- 公众号运营实战手册
- 教学查房及体格检查评分标准
- 西方经济学(第二版)完整整套教学课件
评论
0/150
提交评论