安徽省合肥市肥东县2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析_第1页
安徽省合肥市肥东县2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析_第2页
安徽省合肥市肥东县2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析_第3页
安徽省合肥市肥东县2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析_第4页
安徽省合肥市肥东县2022-2023学年九年级数学第一学期期末质量检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度设花带的宽度为,则可列方程为()ABCD2在下列图形中,既是轴对称图形,又是中心对称图形的是()ABCD3如图,在直线上有相距的两点和(点在点的右侧),以为圆心作半径为的圆,过点作直线.

2、将以的速度向右移动(点始终在直线上),则与直线在_秒时相切.A3B3.5C3或4D3或3.54下面四个实验中,实验结果概率最小的是( )A如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结果绘制了下面的折线统计图,估计出的钉尖朝上的概率B如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率C如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率D有7张卡片,分别标有数字1,2,3,4,6,8,9,将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率5如图

3、,在ABC中,点D、E、F分别在边AB、AC、BC上,且AEDB,再将下列四个选项中的一个作为条件,不一定能使得ADE和BDF相似的是( )ABCD6关于x的一元二次方程有实数根,则a的取值范围是ABCD7如图,抛物线y(x+m)2+5交x轴于点A,B,将该抛物线向右平移3个单位后,与原抛物线交于点C,则点C的纵坐标为( )ABC3D8已知一个三角形的两个内角分别是40,60,另一个三角形的两个内角分别是40,80,则这两个三角形()A一定不相似B不一定相似C一定相似D不能确定9如图,点A是反比例函数y=(x0)的图象上任意一点,ABx轴交反比例函数y=的图象于点B,以AB为边作ABCD,其中

4、C、D在x轴上,则SABCD为( )A2B3C4D510如图,已知O的直径为4,ACB45,则AB的长为()A4B2C4D2二、填空题(每小题3分,共24分)11已知关于的一元二次方程的两个实数根分别是x =-2,x =4,则的值为_.12如图,转盘中个扇形的面积都相等任意转动转盘次,当转盘停止转动时,指针落在阴影部分的概率为_13如图,过轴上的一点作轴的平行线,与反比例函数的图象交于点,与反比例函数,的图象交于点,若的面积为3,则的值为_14若分别是方程的两实根,则的值是_.15分母有理化:_16正方形A1B1C2C1,A2B2C3C2,A3B3C4C3按如图所示的方式放置,点A1、A2、A

5、3和点C1、C2、C3、C4分别在抛物线yx2和y轴上,若点C1(0,1),则正方形A3B3C4C3的面积是_17已知关于x的方程x2+3x+m0有一个根为2,则m_,另一个根为_18如图1,是一建筑物造型的纵截面,曲线是抛物线的一部分,该抛物线开口向右、对称轴正好是水平线,是与水平线垂直的两根支柱,米,米,米.(1)如图1,为了安全美观,准备拆除支柱、,在水平线上另找一点作为地面上的支撑点,用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_.(2)如图2,在水平线上增添一张米长的椅子(在右侧),用固定材料连接、,对抛物线造型进行支撑加固,用料最省时点,之间的距离是_.三

6、、解答题(共66分)19(10分)如图,抛物线y1a(x1)2+4与x轴交于A(1,0)(1)求该抛物线所表示的二次函数的表达式;(2)一次函数y2x+1的图象与抛物线相交于A,C两点,过点C作CB垂直于x轴于点B,求ABC的面积20(6分)如图,王华同学在晚上由路灯AC走向路灯BD,当他走到点P时,发现身后他影子的顶部刚好接触到路灯AC的底部,当他向前再步行12 m到达Q点时,发现身前他影子的顶部刚好接触到路灯BD的底部已知王华同学的身高是1.6 m,两个路灯的高度都是9.6 m(1)求两个路灯之间的距离;(2)当王华同学走到路灯BD处时,他在路灯AC下的影子长是多少?21(6分)如图,已知

7、菱形ABCD,AB=AC,E、F分别是BC、AD的中点,连接AE、CF(1)求证:四边形AECF是矩形;(2)若AB=6,求菱形的面积22(8分)如图,已知二次函数的图象经过,两点(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与轴交于点,连接,求的面积23(8分)如图,要在木里县某林场东西方向的两地之间修一条公路MN,已知C点周围200米范围内为原始森林保护区,在MN上的点A处测得C在A的北偏东45方向上,从A向东走600米到达B处,测得C在点B的北偏西60方向上(1)MN是否穿过原始森林保护区,为什么?(参考数据:1.732)(2)若修路工程顺利进行,要使修路工程比原计划提前5天完

8、成,需将原定的工作效率提高25%,则原计划完成这项工程需要多少天?24(8分)如图,直线与双曲线在第一象限内交于两点,已知.求的值及直线的解析式;根据函数图象,直接写出不等式的解集.25(10分)先化简,再求值:,其中x=sin45,y=cos6026(10分)如图,在中,是边上的中线,平分交于点、交于点,(1)求的长;(2)证明:;(3)求的值参考答案一、选择题(每小题3分,共30分)1、D【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D【点睛】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.2、B【解析】由题意根据

9、轴对称图形与中心对称图形的概念求解【详解】解:A、是轴对称图形,不是中心对称图形,故此选项不合题意;B、是轴对称图形,也是中心对称图形,故此选项符合题意;C、是轴对称图形,不是中心对称图形,故此选项不合题意;D、不是轴对称图形,是中心对称图形,故此选项不合题意故选:B【点睛】本题主要考查轴对称图形和中心对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合3、C【分析】根据与直线AB的相对位置分类讨论:当在直线AB左侧并与直线AB相切时,根据题意,先计算运动的路程,从而求出运动时间;当在直线AB右侧并与直线AB相切时,原理同上.【

10、详解】解:当在直线AB左侧并与直线AB相切时,如图所示的半径为1cm,AO=7cm运动的路程=AO=6cm以的速度向右移动此时的运动时间为:2=3s;当在直线AB右侧并与直线AB相切时,如图所示的半径为1cm,AO=7cm运动的路程=AO=8cm以的速度向右移动此时的运动时间为:2=4s;综上所述:与直线在3或4秒时相切故选:C.【点睛】此题考查的是直线与圆的位置关系:相切和动圆问题,掌握相切的定义和行程问题公式:时间=路程速度是解决此题的关键.4、C【分析】根据概率的求解方法分别求出各概率的大小,即可判断.【详解】A. 如(1)图,在一次实验中,老师共做了400次掷图钉游戏,并记录了游戏的结

11、果绘制了下面的折线统计图,估计出的钉尖朝上的概率大概为0.4;B. 如(2)图,是一个可以自由转动的转盘,任意转动转盘,当转盘停止时,指针落在蓝色区域的概率为0.33;C. 如(3)图,有一个小球在的地板上自由滚动,地板上的每个格都是边长为1的正方形,则小球在地板上最终停留在黑色区域的概率为D. 有7张卡片,分别标有数字1,2,3,4,6,8,9,将它们背面朝上洗匀后,从中随机抽出一张,抽出标有数字“大于6”的卡片的概率0.29.故选C【点睛】此题主要考查概率的求解,解题的关键是熟知概率的计算.5、C【解析】试题解析:C. 两组边对应成比例及其夹角相等,两三角形相似.必须是夹角,但是不一定等于

12、 故选C.点睛:三角形相似的判定方法:两组角对应相等,两个三角形相似.两组边对应成比例及其夹角相等,两三角形相似.三边的比相等,两三角形相似.6、A【解析】试题分析:根据一元二次方程的意义,可知a0,然后根据一元二次方程根的判别式,可由有实数根得=b2-4ac=1-4a0,解得a,因此可知a的取值范围为a且a0.点睛:此题主要考查了一元二次方程根的判别式,解题关键是根据一元二次方程根的个数判断=b2-4ac的值即可.注意:当0时,方程有两个不相等的实数根;当=0时,方程有两个相等的十数根;当0时,方程没有实数根.7、B【分析】将抛物线y(x+m)2+5向右平移3个单位后得到y(x+m3)2+5

13、,然后联立组成方程组求解即可【详解】解:将抛物线y(x+m)2+5向右平移3个单位后得到y(x+m3)2+5,根据题意得:,解得:,交点C的坐标为(,),故选:B【点睛】考查了抛物线与坐标轴的交点坐标等知识,解题的关键是了解抛物线平移规律,并利用平移规律确定平移后的函数的解析式8、C【解析】试题解析:一个三角形的两个内角分别是 第三个内角为 又另一个三角形的两个内角分别是 这两个三角形有两个内角相等,这两个三角形相似.故选C.点睛:两组角对应相等,两三角形相似.9、D【解析】设A的纵坐标是b,则B的纵坐标也是b把y=b代入y=得,b=,则x=,即A的横坐标是,;同理可得:B的横坐标是:则AB=

14、()=则SABCD=b=1故选D10、D【分析】连接OA、OB,根据同弧所对的圆周角是圆心角的一半,即可求出AOB90,再根据等腰直角三角形的性质即可求出AB的长.【详解】连接OA、OB,如图,AOB2ACB24590,AOB为等腰直角三角形,ABOA2故选:D【点睛】此题考查的是圆周角定理和等腰直角三角形的性质,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.二、填空题(每小题3分,共24分)11、-10【解析】根据根与系数的关系得出-2+4=-m,-24=n,求出即可【详解】关于x的一元二次方程的两个实数根分别为x =-2,x =4,2+4=m,24=n,解得:m=2,n=8,m+n=

15、10,故答案为:-10【点睛】此题考查根与系数的关系,掌握运算法则是解题关键12、【分析】根据古典概型的概率的求法,求指针落在阴影部分的概率.【详解】一般地,如果在一次试验中,有种可能的结果,并且它们发生的可能性都相等,事件包含其中的中结果,那么事件发生的概率为. 图中,因为6个扇形的面积都相等,阴影部分的有3个扇形,所以指针落在阴影部分的概率是【点睛】本题考查古典概型的概率的求法.13、-6.【分析】由ABx轴,得到SAOP=,SBOP= ,根据的面积为3得到,即可求得答案.【详解】ABx轴,SAOP=,SBOP= ,SAOB= SAOP+ SBOP=3,-m+n=6,m-n=-6,故答案为

16、:-6.【点睛】此题考查反比例函数中k的几何意义,由反比例函数图象上的一点作x轴(或y轴)的垂线,再连接此点与原点,所得三角形的面积为,解题中注意k的符号.14、3【分析】根据一元二次方程根与系数的关系即可得答案.【详解】分别是方程的两实根,=3,故答案为:3【点睛】此题考查根与系数的关系,一元二次方程根与系数的关系:x1+x2=-,x1x2=;熟练掌握韦达定理是解题关键.15、 + 【解析】一般二次根式的有理化因式是符合平方差公式的特点的式子据此作答【详解】解:= + 故答案为 + 【点睛】本题考查二次根式的有理化根据二次根式的乘除法法则进行二次根式有理化二次根式有理化主要利用了平方差公式,

17、所以一般二次根式的有理化因式是符合平方差公式的特点的式子16、2+【分析】先根据点C1(0,1)求出A1的坐标,故可得出B1、A2、C2的坐标,由此可得出A2C2的长,可得出B2、C3、A3的坐标,同理即可得出A3C3的长,进而得出结论【详解】点(0,1),四边形,均是正方形,点、和点、分别在抛物线和y轴上,(1,1),(0,2),(,2),(0,2+),点的纵坐标与点相同,点在二次函数的图象上,(,),即,故答案为:2+【点睛】本题考查的是二次函数与几何的综合题,熟知正方形的性质及二次函数图象上点的坐标特点是解答此题的关键17、2 x1 【分析】将x2代入方程即可求出m的值,然后根据根与系数

18、的关系即可取出另外一个根【详解】解:将x2代入x2+3x+m0,46+m0,m2,设另外一个根为x,2+x3,x1,故答案为:2,x1【点睛】本题考查了一元二次方程ax2+bx+c=0(a0)根与系数的关系,若x1,x2为方程的两个根,则x1,x2与系数的关系式:,18、 【分析】(1)以点O为原点,OC所在直线为y轴,垂直于OC的直线为x轴建立平面直角坐标系,利用待定系数法确定二次函数的解析式后延长BD到M使MD=BD,连接AM交OC于点P,则点P即为所求;利用待定系数法确定直线MA的解析式,从而求得点P的坐标,从而求得O、P之间的距离;(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于

19、点,则点即为所求.【详解】(1)如图建立平面直角坐标系(以点为原点,所在直线为轴,垂直于的直线为轴),延长到使,连接交于点,则点即为所求.设抛物线的函数解析式为,由题意知旋转后点的坐标为.带入解析式得抛物线的函数解析式为:,当时,点的坐标为,点的坐标为代入,求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.(2)过点作平行于轴且,作点关于轴的对称点,连接交轴于点,则点即为所求.点的坐标为,点坐标为代入,的坐标求得直线的函数解析式为,把代入,得,点的坐标为,用料最省时,点、之间的距离是米.【点睛】本题考查了二次函数的应用,解题的关键是从实际问题中整理出二次函数模型,

20、利用二次函数的知识解决生活中的实际问题三、解答题(共66分)19、(1)y1(x1)2+4;(2).【分析】(1)解答时先根据已知条件求出二次函数的表达式,(2)根据一次函数与抛物线相交的关系算出交点坐标,就可以算出三角形的面积【详解】(1)抛物线y1a(x1)2+4与x轴交于A(1,0),0a(11)2+4,得a1,y1(x1)2+4,即该抛物线所表示的二次函数的表达式是y1(x1)2+4;(2)由 得或一次函数y2x+1的图象与抛物线相交于A,C两点,点A(1,0),点C的坐标为(2,3),过点C作CB垂直于x轴于点B,点B的坐标为(2,0),点A(1,0),点C(2,3),AB2(1)3

21、,BC3,ABC的面积是=【点睛】此题重点考察学生对二次函数的理解,一次函数与二次函数的性质是解题的关键20、(1)18;(2)3.6【分析】(1)依题意得到APMABD,得到再由它可以求出AB;(2)设王华走到路灯BD处头的顶部为E,连接CE并延长交AB的延长线于点F则BF即为此时他在路灯AC的影子长,容易知道EBFCAF,再利用它们对应边成比例求出现在的影子【详解】解:(1)由对称性可知APBQ,设APBQx m,MPBD,APMABD, ,解得x3,AB2x1218(m),即两个路灯之间的距离为18米(2)设王华走到路灯BD处头的顶部为E,连接CE并延长交AB的延长线于点F,则BF即为此

22、时他在路灯AC下的影子长,设BFy m,BEAC,FEBFCA, ,即,解得y3.6,当王华同学走到路灯BD处时,他在路灯AC下的影子长3.6米【点睛】此题主要考查相似三角形的应用,两个问题都主要利用了相似三角形的性质:对应边成比例21、(1)证明见解析;(2)24 【解析】试题分析:(1)首先证明ABC是等边三角形,进而得出AEC=90,四边形AECF是平行四边形,即可得出答案;(2)利用勾股定理得出AE的长,进而求出菱形的面积试题解析:(1)四边形ABCD是菱形,AB=BC,又AB=AC,ABC是等边三角形,E是BC的中点,AEBC,AEC=90,E、F分别是BC、AD的中点,AF=AD,

23、EC=BC,四边形ABCD是菱形,ADBC且AD=BC,AFEC且AF=EC,四边形AECF是平行四边形,又AEC=90,四边形AECF是矩形;(2)在RtABE中,AE=,所以,S菱形ABCD=63=18考点:1.菱形的性质;2.矩形的判定22、见解析【分析】(1)二次函数图象经过A(2,0)、B(0,-6)两点,两点代入y=-x2+bx+c,算出b和c,即可得解析式;(2)先求出对称轴方程,写出C点的坐标,计算出AC,然后由面积公式计算值【详解】(1)把,代入得,解得.这个二次函数解析式为.(2)抛物线对称轴为直线,的坐标为,.【点睛】本题是二次函数的综合题,要会求二次函数的对称轴,会运用面积公式23、(1)不会穿过森林保护区.理由见解析;(2)原计划完成这项工程需要25天.【解析】试题分析:(1)要求MN是否穿过原始森林保护区,也就是求C到MN的距离要构造直角三角形,再解直角三角形;(2)根据题意列方程求解试题解析:(1)如图,过C作CHAB于H,设CH=x,由已知有EAC=45, FBC=60则CAH

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论