版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1若反比例函数y=图象经过点(5,-1),该函数图象在()A第一、二象限B第一、三象限C第二、三象限D第二、四象限2下列图形中一定是相似形的是( )A两个菱形B两个等边三角形C两个矩形D两个直角三角形3下列命题中,直径是圆中最长的弦;长度相等的两
2、条弧是等弧;半径相等的两个圆是等圆;半径不是弧,半圆包括它所对的直径,其中正确的个数是( )ABCD4如图所示,某宾馆大厅要铺圆环形的地毯,工人师傅只测量了与小圆相切的大圆的弦AB的长,就计算出了圆环的面积,若测量得AB的长为20米,则圆环的面积为( )A10平方米B10平方米C100平方米D100平方米5下列说法正确的是( )A若某种游戏活动的中奖率是,则参加这种活动10次必有3次中奖B可能性很大的事件在一次试验中必然会发生C相等的圆心角所对的弧相等是随机事件D掷一枚图钉,落地后钉尖“朝上”和“朝下”的可能性相等6下列图形中,既是中心对称图形,又是轴对称图形的是( )A BCD 7将抛物线y
3、向左平移2个单位后,得到的新抛物线的解析式是()AByCyDy8已知点是线段的一个黄金分割点,则的值为( )ABCD9不等式组的解集是( )ABCD10如图,在正方形中,是等边三角形,的延长线分别交于点,连结与相交于点H给出下列结论, ABEDCF;DPH是等腰三角形;,其中正确结论的个数是()ABCD二、填空题(每小题3分,共24分)11如图,在平面直角坐标系中,ABC和ABC是以坐标原点O为位似中心的位似图形,且点B(3,1),B(6,2),若点A(5,6),则A的坐标为_.12已知函数,如果,那么_.13在ABC中,C=90,若AC=6,BC=8,则ABC外接圆半径为_;14若是方程的一
4、个根,则代数式的值等于_15一次测试,包括甲同学在内的6名同学的平均分为70分,其中甲同学考了45分,则除甲以外的5名同学的平均分为_分16如图,O的半径为6,四边形ABCD内接于O,连接OB,OD,若BOD=BCD,则弧BD的长为_17若,则x_18如图,将一个装有水的杯子倾斜放置在水平的桌面上,其截面可看作一个宽BC=6厘米,长CD=16厘米的矩形当水面触到杯口边缘时,边CD恰有一半露出水面,那么此时水面高度是_厘米三、解答题(共66分)19(10分)如图,正比例函数y1=3x的图象与反比例函数y2=的图象交于A、B两点点C在x轴负半轴上,AC=AO,ACO的面积为1(1)求k的值;(2)
5、根据图象,当y1y2时,写出x的取值范围20(6分)计算:(1)(2)解方程:21(6分)如图,抛物线的顶点坐标为,点的坐标为,为直线下方抛物线上一点,连接,(1)求抛物线的解析式(2)的面积是否有最大值?如果有,请求出最大值和此时点的坐标;如果没有,请说明理由(3)为轴右侧抛物线上一点,为对称轴上一点,若是以点为直角顶点的等腰直角三角形,请直接写出点的坐标22(8分)(1)解方程:(2)如图已知的直径,弦与弦平行,它们之间的距离为7,且,求弦的长23(8分)已知:在ABC中,AB=AC,ADBC于点D,分别过点A和点C作BC、AD边的平行线交于点E(1)求证:四边形ADCE是矩形;(2)连结
6、BE,若,AD=,求BE的长24(8分)已知抛物线yx2+(12a)x2a(a是常数)(1)证明:该抛物线与x轴总有交点;(2)设该抛物线与x轴的一个交点为A(m,0),若2m5,求a的取值范围;(3)在(2)的条件下,若a为整数,将抛物线在x轴下方的部分沿x轴向上翻折,其余部分保持不变,得到一个新图象G,请你结合新图象,探究直线ykx+1(k为常数)与新图象G公共点个数的情况25(10分)如图,直线yx+3与x轴、y轴分别交于B、C两点,抛物线yx2+bx+c经过B、C两点,与x轴另一交点为A,顶点为D(1)求抛物线的解析式;(2)在x轴上找一点E,使EDC的周长最小,求符合条件的E点坐标;
7、(3)在抛物线的对称轴上是否存在一点P,使得APBOCB?若存在,求出PB2的值;若不存在,请说明理由26(10分)某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37,测得点C处的俯角为45又经过人工测量操控者A和教学楼BC距离为57米,求教学楼BC的高度(注:点A,B,C,D都在同一平面上参考数据:sin370.60,cos370.80,tan370.75)参考答案一、选择题(每小题3分,共30分)1、D【解析】反比例函数y=的图象经过点(5,-1),k=5(-1)=-50,该函数图象在第二、四象限故选D2、B【分析】如果两个多边形的对应
8、角相等,对应边的比相等,则这两个多边形是相似多边形【详解】解:等边三角形的对应角相等,对应边的比相等,两个等边三角形一定是相似形,又直角三角形,菱形的对应角不一定相等,矩形的边不一定对应成比例,两个直角三角形、两个菱形、两个矩形都不一定是相似形,故选:B【点睛】本题考查了相似多边形的识别判定两个图形相似的依据是:对应边成比例,对应角相等,两个条件必须同时具备3、C【分析】根据弦、弧、等弧的定义即可求解【详解】解:直径是圆中最长的弦,真命题;在等圆或同圆中,长度相等的两条弧是等弧,假命题;半径相等的两个圆是等圆,真命题;半径是圆心与圆上一点之间的线段,不是弧,半圆包括它所对的直径,真命题故选:C
9、【点睛】本题考查了圆的认识:掌握与圆有关的概念(弦、直径、半径、弧、半圆、优弧、劣弧、等圆、等弧等)4、D【解析】过O作OCAB于C,连OA,根据垂径定理得到AC=BC=10,再根据切线的性质得到AB为小圆的切线,于是有圆环的面积=OA2-OC2=(OA2-OC2)=AC2,即可圆环的面积【详解】过O作OCAB于C,连OA,如图,AC=BC,而AB=20,AC=10,AB与小圆相切,OC为小圆的半径,圆环的面积=OA2-OC2=(OA2-OC2)=AC2=100(平方米)故选D【点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧也考查了切线的性质定理以及勾股定理5、C【分析】根
10、据概率的意义对A进行判断,根据必然事件、随机事件的定义对B、C进行判断,根据可能性的大小对D进行判断【详解】A、某种游戏活动的中奖率是30%,若参加这种活动10次不一定有3次中奖,所以该选项错误B、可能性很大的事件在一次实验中不一定必然发生,所以该选项错误;C、相等的圆心角所对的弧相等是随机事件,所以该选项正确;D、图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,所以该选项错误;故选:C【点睛】此题考查了概率的意义、比较可能性大小、必然事件以及随机事件,正确理解含义是解决本题的关键6、C【分析】根据中心对称图形和轴对称图形的定义逐项进行判断即可.【详解】A、是中心对称图形,但不是轴对
11、称图形,故不符合题意;B、是轴对称图形,但不是中心对称图形,故不符合题意;C、既是中心对称图形,又是轴对称图形,符合题意;D、既不是中心对称图形,也不是轴对称图形,故不符合题意.故选:C.【点睛】本题考查中心对称图形和轴对称图形的定义,熟练掌握定义是关键.7、A【分析】按照“左加右减,上加下减”的规律,进而得出平移后抛物线的解析式即可【详解】解:将抛物线y向左平移2个单位后,得到的新抛物线的解析式是:故答案为A【点睛】本题考查了二次函数图像的平移法则,即掌握“左加右减,上加下减”是解答本题的关键.8、A【解析】试题分析:根据题意得AP=AB,所以PB=AB-AP=AB,所以PB:AB=故选B考
12、点:黄金分割点评:本题考查了黄金分割:把线段AB分成两条线段AC和BC(ACBC),且使AC是AB和BC的比例中项(即AB:AC=AC:BC),叫做把线段AB黄金分割,点C叫做线段AB的黄金分割点;其中AC=AB0.618AB,并且线段AB的黄金分割点有两个9、D【分析】根据不等式的性质解不等式组即可.【详解】解:化简可得: 因此可得 故选D.【点睛】本题主要考查不等式组的解,这是中考的必考点,应当熟练掌握.10、A【分析】利用等边三角形的性质以及正方形的性质得出ABE=DCF=30,再直接利用全等三角形的判定方法得出答案;利用等边三角形的性质结合正方形的性质得出DHP=BHC=75,进而得出
13、答案;利用相似三角形的判定与性质结合锐角三角函数关系得出答案;根据三角形面积计算公式,结合图形得到BPD的面积=BCP的面积+CDP面积-BCD的面积,得出答案【详解】BPC是等边三角形,BP=PC=BC,PBC=PCB=BPC=60,在正方形ABCD中,AB=BC=CD,A=ADC=BCD=90ABE=DCF=30,在ABE与CDF中,ABEDCF,故正确;PC=BC=DC,PCD=30,CPD=75,DBC=45,BCF=60,DHP=BHC=18075,PD=DH,DPH是等腰三角形,故正确; 设PF=x,PC=y,则DC=AB=PC=y,FCD=30,即,整理得:解得:,则,故正确;如
14、图,过P作PMCD,PNBC,设正方形ABCD的边长是4,BPC为正三角形,PBC=PCB=60,PB=PC=BC=CD=4, PCD=30,SBPD=S四边形PBCD-SBCD=SPBC+SPDC-SBCD,故正确;故正确的有4个,故选:A【点睛】本题考查了正方形的性质以及全等三角形的判定等知识,解答此题的关键是作出辅助线,利用锐角三角函数的定义表示出出FE及PC的长是解题关键二、填空题(每小题3分,共24分)11、 (2.5,3)【分析】利用点B(3,1),B(6,2)即可得出位似比进而得出A的坐标.【详解】解:点B(3,1),B(6,2),点A(5,6),A的坐标为:(2.5,3).故答
15、案为:(2.5,3).【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心12、1【分析】把x=2代入函数关系式即可求得【详解】f(2)=322-22-1=1,故答案为1【点睛】此题考查二次函数图象上点的坐标特征,解题关键在于掌握函数图象上点的坐标适合解析式13、5【分析】先确定外接圆的半径是AB,圆心在AB的中点,再计算AB的长,由此求出外接圆的半径为5.【详解】在ABC中,C=90,ABC外接圆直径为斜边AB、圆心是AB的中点,C=90,AC=6,BC=8,ABC外接圆半径为5.故答案为:5
16、.【点睛】此题考查勾股定理的运用、三角形外接圆的确定.根据圆周角定理,直角三角形的直角所对的边为直径,即可确定圆的位置及大小.14、1【分析】把代入已知方程,求得,然后得的值即可【详解】解:把代入已知方程得,故答案为1【点睛】本题考查一元二次方程的解以及代数式求值,注意已知条件与待求代数式之间的关系15、1【分析】求出6名学生的总分后,再求出除甲同学之外的5人的总分,进而求出平均分即可【详解】(70645)(61)1分,故答案为:1【点睛】此题考查平均数的计算,掌握公式即可正确解答.16、4【解析】根据圆内接四边形对角互补可得BCD+A=180,再根据同弧所对的圆周角与圆心角的关系以及BOD=
17、BCD,可求得A=60,从而得BOD=120,再利用弧长公式进行计算即可得.【详解】解:四边形ABCD内接于O,BCD+A=180,BOD=2A,BOD=BCD,2A+A=180,解得:A=60,BOD=120,的长=,故答案为4.【点睛】本题考查了圆周角定理、弧长公式等,求得A的度数是解题的关键.17、【分析】用直接开平方法解方程即可.【详解】,故答案为:.【点睛】此题考查一元二次方程的解法,依据方程的特点选择恰当的方法.18、【分析】先由勾股定理求出,再过点作于,由的比例线段求得结果即可【详解】解:过点作于,如图所示:BC=6厘米,CD=16厘米,CD厘米,由勾股定理得:,即,故答案为:【
18、点睛】此题主要考查了勾股定理的应用以及相似三角形的判定与性质,正确把握相关性质是解题关键三、解答题(共66分)19、(1)k=-1; (2)x2或0 x2【解析】试题分析:(1)过点A作AD垂直于OC,由,得到,确定出ADO与ACO面积,即可求出k的值; (2)根据函数图象,找出满足题意x的范围即可.解:(1)如图,过点A作ADOC,AC=AO,CD=DO,SADO=SACD=6,k=-1; (2)根据图象得:当y1y2时,x的范围为x2或0 x220、(1);(2)【分析】(1)由题意利用乘方运算法则并代入特殊三角函数值进行计算即可;(2)根据题意直接利用因式分解法进行方程的求解即可.【详解
19、】解:(1)(2) ,解得.【点睛】本题考查实数的混合运算以及解一元二次方程,熟练掌握乘方运算法则和特殊三角函数值以及利用因式分解法解方程是解题的关键.21、(1);(2)最大值为,点的坐标为;(3)点的坐标为,【分析】(1)先设顶点式,再代入顶点坐标得出,最后代入计算出二次项系数即得;(2)点的坐标为,先求出B、C两点,再用含m的式子表示出的面积,进而得出面积与m的二次函数关系,最后根据二次函数性质即得最值;(3)分成Q点在对称轴的左侧和右侧两种情况,再分别根据和列出方程求解即得【详解】(1)设抛物线的解析式为顶点坐标为将点代入,解得抛物线的解析式为(2)如图1,过点作轴,垂足为,交于点将代
20、入,解得,点的坐标为将代入,解得点C的坐标为设直线的解析式为点的坐标为,点的坐标为,解得直线的解析式为设点的坐标为,则点的坐标为过点作于点故当时,的面积有最大值,最大值为此时点的坐标为(3)点的坐标为,分两种情况进行分析:如图2,过点作轴的平行线,分别交轴、对称轴于点,设点的坐标为在和中,解得(舍去),点的坐标为如图3,过点,作轴的平行线,过点作轴的平行线,分别交,于点,设点的坐标由知,解得,(舍去)点的坐标为综上所述:点的坐标为或【点睛】本题是二次函数综合题,考查了待定系数法求解析式、二次函数最值的应用、解一元二次方程、全等三角形的判定及性质,解题关键是熟知二次函数在实数范围的最值在顶点取到
21、,一线三垂直的全等模型,二次函数顶点式:22、(1);(2)1【分析】(1)先移项,然后利用因式分解法解方程即可(2)作OMAB于M,ONCD于N,连接OA、OC,根据垂径定理求出AM,根据勾股定理求出OM,根据题意求出ON,根据勾股定理、垂径定理计算即可【详解】(1)解:或 (2)作OMAB于M,ONCD于N,连接OA、OC, 则点在同一条直线上,在中在中, 【点睛】本题考查了解一元二次方程、垂径定理和勾股定理的应用,掌握垂直于弦的直径平分这条弦是解题的关键23、(1)见解析;(2)【分析】(1)先根据已知条件证四边形ADCE是平行四边形,再加上ADC=90,证平行四边形ADCE是矩形;(2
22、)根据,得到BD与AB的关系,通过解直角三角形,求AD长,则可求EC的值,在RtBDE中,利用勾股定理得BE.【详解】(1)证明:AE / BC,CE / AD 四边形ADCE是平行四边形AD BC,AB=ACADC=90, 平行四边形ADCE是矩形(2)解:连接DE,如图:在RtABD中,ADB =90 设BD=x,AB=2xAD=AD= x=2BD=2AB=AC,ADBCBC=2BD=4矩形ADCE中,EC=AD=, BC=4在RtBDE中,利用勾股定理得BE=【点睛】本题考查了平行四边形、矩形的判定与性质、矩形的判定、勾股定理、等腰三角形性质的应用,熟练掌握相关性质和定理是解决问题的关键
23、24、(1)见解析;(2)1a;(3)新图象G公共点有2个【分析】(1)令抛物线的y值等于0,证所得方程的0即可;(2)将点A坐标代入可求m的值,即可求a的取值范围;(3)分k0和k0两种情况讨论,结合图象可求解【详解】解:(1)设y0,则0 x2+(12a)x2a,(12a)241(2a)(1+2a)20,x2+(12a)x2a0有实数根,该抛物线与x轴总有交点;(2)抛物线与x轴的一个交点为A(m,0),0m2+(12a)m2a,m1,m2a,2m5,22a5,1a;(3)1a,且a为整数,a2,抛物线解析式为:yx23x4,如图,当k0时,若ykx+1过点(1,0)时,直线ykx+1(k
24、为常数)与新图象G公共点有3个,即k1,当0k1时,直线ykx+1(k为常数)与新图象G公共点有4个,当k1时,直线ykx+1(k为常数)与新图象G公共点有2个,如图,当k0时,若ykx+1过点(4,0)时,直线ykx+1(k为常数)与新图象G公共点有3个,即k,当k0时,直线ykx+1(k为常数)与新图象G公共点有4个,当k时,直线ykx+1(k为常数)与新图象G公共点有2个,【点睛】本题考查了二次函数与一次函数相结合的综合题:熟练掌握二次函数的性质;会利用根的判别式确定抛物线与x轴的交点个数;理解坐标与图形性质,会利用分类讨论的方法解题;要会利用数形结合的思想把代数和几何图形结合起来,利用数形结合的方法是解题的关键25、(1)yx2+2x+3;(2)点E(,0);(3)PB2的值为16+8【分析】(1)求出点B、C的坐标分别为(3,0)、(0,3),将点B、C的坐标代入二次函数表达式,即可求解;(2)如图1,作点C关于x轴的对称点C,连接CD交x轴于点E,则此时EC+ED为最小,EDC的周长最小,即可求解;(3)分点P在x轴上方、点P在x轴下方两种情况,由勾股定理可求解【详解】
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汕头市澄海区2024年一级造价工程师《土建计量》点睛提分卷含解析
- 山西省朔州市应县2024年一级造价工程师《土建计量》高分通关卷含解析
- 宁乡县2024年一级造价工程师《土建计量》深度自测卷含解析
- 《变配电工程》课件
- 励志主题班会2
- 第三单元 走向未来的少年检测题(含答案) -2024-2025学年度九年级道德与法治下册
- 《无障碍设计规范》课件
- 东阳市外墙防水施工方案
- 县广播电视台某年工作计划
- 冬春季呼吸道疾病的预防
- 《田间试验》课件
- 【MOOC】概率论与数理统计-北京理工大学 中国大学慕课MOOC答案
- 人生课件路遥
- 2024年新疆中考化学真题【附答案】
- 关于糖尿病的综述论文
- 《静脉输液和输血法》PPT课件.ppt
- 《质量管理小组活动准则》2020版_20211228_111842
- 物业管理搞笑小品剧本 搞笑小品剧本:物业管理难啊
- 《木偶兵进行曲》教案
- 五四制青岛版一年级科学上册第四单元《水》全部教案
- GB∕T 39757-2021 建筑施工机械与设备 混凝土泵和泵车安全使用规程
评论
0/150
提交评论