微生物培养技术_第1页
微生物培养技术_第2页
微生物培养技术_第3页
微生物培养技术_第4页
微生物培养技术_第5页
已阅读5页,还剩31页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第六章:微生物培养技术与动力学6.1 微生物发酵动力学6.1.1 分批培养 营养物和菌种一次加入进行培养,直到结 束放出,中间除了空气进入和尾气排出,添加消泡剂和调节pH, 与外部没有物料交换, 属于非稳态过程。 优点:放大到罐操作比较容易 ,操作简单 缺点:培养初期营养物过多/后期代谢产物的积累可能抑制生长,培养的中后期可能又因为营养物浓度过低而降低培养效率 ,总设备生产能力不高1 延迟期(lag phase)是微生物适应新环境的过程.,表现为细胞的数量没有增加,但一些参与物质的运输/与初级代谢相关的酶类会诱导合成;以及一些辅助因子的合成需要一些时间。所以,其时期的长短与细胞的生理状态和细胞

2、的浓度有关。 对数生长期(log phase/exponential growth phase)培养基营养丰富,细胞生长不受限制,细胞浓度随时间指数生长。分批培养过程中,微生物的生长曲线2dx/dt =x, =(1/x) (dx/dt) x: 细胞的浓度 g/Lt: 培养时间 h, : 比生长速度 h-1单位菌体浓度引起的菌体增长,反映了指数生长期细胞生长的快慢。对数期为常数,初始条件: t0=0, t; x0, x, 积分得:6.87*10103影响的因素细胞的种类,培养条件(培养温度,限制性基质浓度,pH, 溶氧)倍增时间td:当细胞群体增加一倍时,所需的时间。由公式描绘营养物的浓度对微生

3、物生长的影响:1942年, Monod总结了经验方程微生物td: 0.5-5 h动物细胞td:15-100 h植物细胞td: 24-74 htd 和反映在对数生长期微生物的生长特性,4Monod方程呈双曲线。m最大比生长速率,s: 限制性营养物质的浓度,Ks: 饱和常数,为比生长速度等于最大值的一半时的底物浓度。其值大,表示微生物对营养物质的吸收亲和力小,反之,就越大。 当底物浓度很低时,即a 段,SKs, 从Monod 式中得 b段为适合Monod方程段,5 c 段为SKs,由于底物浓度过高导致的底物抑制或代谢产物产生抑制,不符合Monod方程,对于前者,有下列公式描述:营养物质的抑制,如G

4、代谢产物产生的抑制,如乙醇当底物浓度很高时且无抑制现象发生,即d 段,S Ks, 从Monod 式中得67例:在5 m3培养液中,按5%接种量接种,已知原接种液中含菌5106(个/毫升),如果培养后发酵液中的菌体含量需达4109(个/毫升),求所需培养时间。假定在整个培养时间,均满足s Ks的条件,已知max=0.8 h-1解:因为s Ks,故所以积分得依题意于是8 稳定期 (stationary phase)由于营养物的消耗和代谢产物的积累,是微生物的生长速度下降直至停止。从而进入静止期。此时细胞浓度值为最大。若生长速率的下降是由于营养物质的消耗造成的,假设接种细胞后立即进入指数生长期且一直

5、保持到静止期刚接入菌时,底物浓度为S, 刚进入稳定期时S=0式中: KS是常数,X:细胞浓度,S为限制性营养物质的浓度单纯由于营养物质的耗竭造成的生长速率的下降可以通过提高营养物质的初始浓度来推迟稳定期的出现9 衰亡期 (death phase/decline phase)由于环境的恶化,培养液中的细胞开始死亡。,在微生物的培养过程中,对衰亡期的研究一般较少。主要由于大多数分批培养的发酵生产,均是在衰亡期开始之前就已经停止操作,它的研究对生产价值不大,。衰亡期的生物群体遵循指数规律衰减即:式中Xm:最大生物群体浓度; a:微生物的比生长速率。X: 死亡细胞的浓度。10分批培养时微生物细胞的生长

6、与产物形成的动力学培养基中的营养物质被微生物细胞所利用生成细胞:细胞得率系数生成代谢产物:产物得率系数消耗一克营养物质生成的细胞的克数或生成的产物的克数工业上,一段时间的平均值,获得为表观得率系数11 按产物的生成与营养物质的利用之间的关系可将发酵分为三种类型12按产物的生成与微生物生长关系的动力学模式分为三种类型(a):相关联型,产物的形成速度与细胞的比生长速度成正比,因此要提高产物的形成速度就应当努力获得高的细胞的比生长速度(b):复合模式:取决于有关联和无关联的两种形式。(c) 无关联模式:产物的形成速度与生长速度无关联,而只与细胞的浓度有关。136.1.2 连续培养基本操作模型如图所示

7、。物料连续地以体积流量F流入反应器,并以同样流量流出。流入物流中基质浓度为S0,菌浓度为 Xo,Xo一般为0,反应器内有很好的混合,即各点浓度一样,特点:流出物流的浓度与反应器内相同,而且加入的物流一进入反应器立即与反应器内物料均匀混合。 在分批培养过程中,既使提高营养物质的初始浓度,或者采用有些措施中和稀释代谢毒物, 但指数生长期迟早有结束,稳定期也终将出现。就这一问题的彻底解决,Monod首先提出了此培养方式。此培养方式为稳态过程。14Depletion of nutrientsLack of oxygenChange in pHGrowth inhibition from metabol

8、ic end productsWhy do Cells Stop Growing?1516简单连续培养 微生物的物料衡算(细胞进入)-(细胞流出)+(细胞生长)-(细胞死亡)=(细胞积累速率)在稳态操作情况下可以假设: (1)x0=0,即入口仅加入基质(S0); (2)反应器无积累,dx/dt=0,ds/dt=0; (3)菌体死亡速率远较生长速率低,1,为浓缩因子, 0,为循环比,所以1-(c-1)小于1, 小于D, 具有细胞循环的连续反应器, 取决于D,c和。*对限制性营养物质作衡算27*x, s D之间的关系=1-(c-1)D28由此可见,具有细胞循环的简单连续系统比无循环系统提高了生产能

9、力,而且提高了系统的稳定性,反应器可在高于细胞比生长速率的稀释率下操作,广泛用于废水的生化处理。29多级连续培养前一反应器的出料为后一反应器的进料/部分进料。此操作方式可以解决不同生产阶段有不同生产要求的矛盾,同时解决快速生长和营养物质充分利用之间的矛盾。对于代谢产物如青霉素,其菌体生长的最佳温度为30C, 而产青霉素的最佳生产温度为20C,在单级反应中无法兼顾,而采用双罐联续培养,可以解决了上述问题。在单级培养中,从发酵罐中排出的料液所含的营养物的浓度必须足够低,Monod方程可知,s低,会导致减小。采用多级罐串联使问题解决。30对第一个罐物料衡算D1= 1对第二个罐物料衡算二个罐物料停留的

10、总时间对第一/二个罐细胞浓度,单罐时底物浓度与双罐时的第二个罐内浓度相同,因而有=231已知=0.5(min-1),Ks=0.3(g/L),S0=50(g/L),S1=5(g/L), S2=0.2(g/L),求采用单、双级连续反应器的所需的时间对于单罐,=D, =1/D,采用单罐时S=S2,对于双罐,1=D1, 1=1/D1, 应用Monod方程,解出: 1等于0.47,2为0.2 32解得:2=0.48 (h) 1=2.13, 总时间=2.61 (h)s=1/s=5 (h)336.1.3 分批补料培养法又称流加。介于分批与连续培养之间的一种模式。由Yoshide1973提出。此模式进料连续或

11、按一定的规律,出料则在一定的时间排除部分料液。为不稳定的过程。分批补料的计算34消除快速利用碳源后,造成的阻遏效应,维持罐内良好的需氧发酵条件。避免培养基中某些成分的毒害作用。生产酵母培养基中含有麦芽汁过多,开始导致细胞的过速增长,同时细胞对氧气的需求大于设备提供的能力,是培养系统成为厌氧条件,是酵母产生乙醇,导致抑制细胞的生长,成为阻遏效应。同理,面包酵母如果添加葡萄糖超过某一值时,也会产生此效应。青霉菌发酵生产青霉素,要求精确的控制葡萄糖的补入速率。生长期是葡萄糖的含量适宜。而在生产期控制补料速率,使青霉素的合成速率达到高值。另一方面,产物前提物的添加,有利于产量的提高,担当此物质对细胞的生长有毒害作用使,应采用缓慢的加料方式,如苯乙酸钠。35Laboratory process developmentShake Flask ExperimentsOptimization of conditions for cell

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论