




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,将RtABC(其中B=35,C=90)绕点A按顺时针方向旋转到AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角等于( )A35B50C125D902如图,已知在ABC中,DEBC,则以下式子不正确的是( )AB C D3把抛
2、物线向右平移一个单位,再向上平移3个单位,得到抛物线的解析式为( )ABCD4如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB的宽为8cm,水面最深的地方高度为2cm,则该输水管的半径为()A3cmB5cmC6cmD8cm5函数的图象如图所示,那么函数的图象大致是( )ABCD6一个圆锥的底面直径是8cm,母线长为9cm,则圆锥的全面积为()A36cm2B52cm2C72cm2D136cm27从,这四个数字中任取两个,其乘积为偶数的概率是( )ABCD8下列条件中,一定能判断两个等腰三角形相似的是()A都含有一个40的内角B都含有一个50的内角C都含有一个60的内角D都含
3、有一个70的内角9已知矩形ABCD,下列结论错误的是()AABDCBACBDCACBDDA+C18010如图,点是上的点,则是( )ABCD二、填空题(每小题3分,共24分)11如图,已知的面积为48,将沿平移到,使和重合,连结交于,则的面积为_12如图,平面直角坐标系中,等腰的顶点分别在轴、轴的正半轴, 轴, 点在函数的图象上.若则的值为_13在锐角ABC中,若sinA=,则A=_14已知某品牌汽车在进行刹车测试时发现,该品牌某款汽车刹车后行驶的距离(单位:米)与行驶时间 (单位:秒)满足下面的函数关系: 那么测试实验中该汽车从开始刹车到完全停止,共行驶了_米15_.16方程x2=2的解是
4、17如图,点B是双曲线y(k0)上的一点,点A在x轴上,且AB2,OBAB,若BAO60,则k_18如图,将RtABC绕点A逆时针旋转40,得到RtABC,使AB恰好经过点C,连接BB,则BAC的度数为_三、解答题(共66分)19(10分)已知关于x的方程x2-(2m+1)x+m(m+1)=0.(1)求证:方程总有两个不相等的实数根;(2)已知方程的一个根为x=0,求代数式(2m-1)2+(3+m)(3-m)+7m-5的值(要求先化简再求值).20(6分)在平面直角坐标系xOy中,抛物线与y轴交于点A(1)直接写出点A的坐标;(2)点A、B关于对称轴对称,求点B的坐标;(3)已知点,若抛物线与
5、线段PQ恰有两个公共点,结合函数图象,求a的取值范围21(6分)如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BC相交于点N连接BM,DN(1)求证:四边形BMDN是菱形;(2)若AB=4,AD=8,求MD的长22(8分)(1)计算;(2)解不等式23(8分)为了“创建文明城市,建设美丽家园”,我市某社区将辖区内的一块面积为的空地进行绿化,一部分种草,剩余部分栽花.设种草部分的面积为,种草所需费用(元)与的函数关系式为,其大致图象如图所示.栽花所需费用(元)与的函数关系式为.(1)求出,的值;(2)若种花面积不小于时的绿化总费用为(元),写出与的函数关系式,并求出绿化总
6、费用的最大值.24(8分)计算:(1)已知,求的值;(2)6cos2452tan30tan6025(10分)如图,已知直线AB经过点(0,4),与抛物线y=x2交于A,B两点,其中点A的横坐标是(1)求这条直线的函数关系式及点B的坐标(2)在x轴上是否存在点C,使得ABC是直角三角形?若存在,求出点C的坐标,若不存在请说明理由(3)过线段AB上一点P,作PMx轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3MP的长度最大?最大值是多少?26(10分)如图,在半径为5的扇形AOB中,AOB=90,点C是弧AB上的一个动点(不与点A、B重合)ODBC,OEAC,
7、垂足分别为D、E(1)当BC=6时,求线段OD的长;(2)在DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由参考答案一、选择题(每小题3分,共30分)1、C【分析】根据直角三角形两锐角互余求出BAC,然后求出BAB1,再根据旋转的性质对应边的夹角BAB1即为旋转角【详解】B35,C90,BAC90B903555,点C、A、B1在同一条直线上,BAB1180BAC18055125,旋转角等于125故选:C【点睛】本题考查了旋转的性质,直角三角形两锐角互余的性质,熟练掌握旋转的性质,明确对应边的夹角即为旋转角是解题的关键2、D【分析】由DEBC可以推得ADEAB
8、C,再由相似三角形的性质出发可以判断各选项的对错【详解】DEBC,ADEABC,所以有:A、,正确;B、由A得,即,正确;C、,即,正确;D、,即,错误故选D【点睛】本题考查三角形相似的判定与性质,根据三角形相似的性质写出有关线段的比例式是解题关键3、A【解析】试题解析:抛物线的顶点坐标为(0,0),把点(0,0)先向右平移1个单位,再向上平移1个单位后得到的点的坐标为(1,1),所以所得的抛物线的解析式为y=(x-1)2+1故选B考点:二次函数图象与几何变换4、B【分析】先过点O作ODAB于点D,连接OA,由垂径定理可知ADAB,设OAr,则ODr2,在RtAOD中,利用勾股定理即可求出r的
9、值【详解】解:如图所示:过点O作ODAB于点D,连接OA,ODAB,ADAB4cm,设OAr,则ODr2,在RtAOD中,OA2OD2+AD2,即r2(r2)2+42,解得r5cm该输水管的半径为5cm;故选:B【点睛】此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.5、D【解析】首先由反比例函数的图象位于第二、四象限,得出k0,则-k0,所以一次函数图象经过第二四象限且与y轴正半轴相交【详解】解:反比例函数的图象在第二、四象限, 函数的图象应经过第一、二、四象限.故选D.【点睛】本题考查的知识点:(1)反比例函数的图象是双曲线,当k0时,它的两个分支分别位于第二、四象限(2)
10、一次函数y=kx+b的图象当k0,b0时,函数y=kx+b的图象经过第一、二、四象限6、B【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长和扇形的面积公式计算出圆锥的侧面积,然后计算侧面积与底面积的和【详解】解:圆锥的全面积42+24952(cm2)故选:B【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长7、C【分析】画树状图得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式计算可得【详解】解:画树状图得:共有12种等可能的结果,任取两个不同的数,其中积为偶数的有6种
11、结果,积为偶数的概率是,故选:C【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件用到的知识点为:概率=所求情况数与总情况数之比8、C【解析】试题解析:因为A,B,D给出的角可能是顶角也可能是底角,所以不对应,则不能判定两个等腰三角形相似;故A,B,D错误;C. 有一个的内角的等腰三角形是等边三角形,所有的等边三角形相似,故C正确.故选C.9、C【分析】由矩形的性质得出ABDC,ACBD,ABCD90,则A+C180,只有ABBC时,ACBD,即可得出结果【详解】四边形ABCD是
12、矩形,ABDC,ACBD,ABCD90,A+C180,只有ABBC时,ACBD,A、B、D不符合题意,只有C符合题意,故选:C 【点睛】此题主要考查了矩形的性质的运用,熟练掌握矩形的性质是解题的关键10、A【分析】本题利用弧的度数等于所对的圆周角度数的2倍求解优弧度数,继而求解劣弧度数,最后根据弧的度数等于圆心角的度数求解本题【详解】如下图所示:BDC=120,优弧的度数为240,劣弧度数为120劣弧所对的圆心角为BOC,BOC=120故选:A【点睛】本题考查圆的相关概念,解题关键在于清楚圆心角、圆周角、弧各个概念之间的关系二、填空题(每小题3分,共24分)11、24【解析】根据平移变换只改变
13、图形的位置,不改变图形的形状与大小,可得B=ACC,BC=BC,再根据同位角相等,两直线平行可得CDAB,然后求出CD=AB,点C到AB的距离等于点C到AB的距离,根据等高的三角形的面积的比等于底边的比即可求解.也可用相似三角形的面积比等于相似比的平方来求【详解】解:根据题意得B=ACC,BC=BC,CD/AB,CD= AB(三角形的中位线),点C到AC的距离等于点C到AB的距离,CDC的面积=ABC的面积,=48=24故答案为:24【点睛】本题考查的是三角形面积的求法之一,等高的三角形的面积比等于底的比,也可用相似三角形的面积比等于相似比的平方来求得12、4【分析】根据等腰三角形的性质和勾股
14、定理求出AC的值,根据等面积法求出OA的值,OA和AC分别是点C的横纵坐标,又点C在反比例函数图像上,即可得出答案.【详解】ABC为等腰直角三角形,AB=2BC=2,解得:OA=点C的坐标为又点C在反比例函数图像上故答案为4.【点睛】本题考查的是反比例函数,解题关键是根据等面积法求出点C的横坐标.13、30【分析】由题意直接利用特殊锐角三角函数值即可求得答案.【详解】解:因为sin30=,且ABC是锐角三角形,所以A=30.故填:30.【点睛】本题考查特殊锐角三角函数值,熟记特殊锐角三角函数值是解题的关键.14、1【分析】此题利用配方法求二次函数最值的方法求解即可;【详解】,汽车刹车后直到停下
15、来前进了1m故答案是1【点睛】本题主要考查了二次函数最值应用,准确化简计算是解题的关键15、【分析】直接代入特殊角的三角函数值进行计算即可【详解】原式故答数为:【点睛】本题考查了特殊角的三角函数值及实数的运算,熟记特殊角的三角函数值是解题的关键16、【解析】试题分析:根据二次根式的性质或一元二次方程的直接开平方法解方程即可求得x=考点:一元二次方程的解法17、3【分析】利用60余弦值可求得OB的长,作ADOB于点D,利用60的正弦值可求得AD长,利用60余弦值可求得BD长,OB-BD即为点A的横坐标,那么k等于点A的横纵坐标的积【详解】解:AB2,0AOB,ABO60,OAABcos604,作
16、ADOB于点D,BDABsin60,ADABcos601,ODOAAD3,点B的坐标为(3,),B是双曲线y上一点,kxy3故答案为:3【点睛】本题考查了解直角三角形,反比例函数图像上点的坐标特征,解决本题的关键是利用相应的特殊的三角函数值得到点B的坐标;反比例函数的比例系数等于在它上面的点的横纵坐标的积18、1【分析】由图形选择的性质,BACBAC则问题可解.【详解】解:RtABC绕点A逆时针旋转40,得到RtABC,使AB恰好经过点C,BACBAC40,BACBAC+BAC1,故答案为:1【点睛】本题考查了图形旋转的性质,解答关键是应用旋转过程中旋转角不变的性质.三、解答题(共66分)19
17、、(1)证明见解析;(2)2.【解析】试题分析:(1)找出a,b及c,表示出根的判别式,变形后得到其值大于1,即可得证(2)把x=1代入方程即可求m的值,然后化简代数式再将m的值代入所求的代数式并求值即可试题解析:(1)关于x的一元二次方程x2-(2m+1)x+m(m+1)=1=(2m+1)2-4m(m+1)=11,方程总有两个不相等的实数根;(2)x=1是此方程的一个根,把x=1代入方程中得到m(m+1)=1,m=1或m=-1,(2m-1)2+(3+m)(3-m)+7m-2=4m2-4m+1+9-m2+7m-2=3m2+3m+2,把m=1代入3m2+3m+2得:3m2+3m+2=2;把m=-
18、1代入3m2+3m+2得:3m2+3m+2=31-3+2=2考点:1.根的判别式;2.一元二次方程的解20、 (1)(0,-3);(2)B(2,-3);(3) 或【分析】(1)题干要求直接写出点A的坐标,将x=0代入即可求出;(2)由题意知点A、B关于对称轴对称,求出对称轴从而即可求点B的坐标;(3)结合函数图象,抛物线与线段PQ恰有两个公共点,分别对有两个公共点的情况进行讨论求解.【详解】解:(1)由题意抛物线与y轴交于点A ,将x=0代入求出坐标为; (2); (3)当抛物线过点P(4,0)时, 此时,抛物线与线段PQ有两个公共点 当抛物线过点 时,a=1, 此时,抛物线与线段PQ有两个公
19、共点 抛物线与线段PQ恰有两个公共点, 当抛物线开口向下时, 综上所述,当或时,抛物线与线段PQ恰有两个公共点【点睛】本题考查二次函数图像相关性质,熟练掌握二次函数图像相关性质是解题的关键.21、(1)证明见解析;(2)MD长为1【分析】(1)利用矩形性质,证明BMDN是平行四边形,再结合MNBD,证明BMDN是菱形(2)利用BMDN是菱形,得BM=DM,设,则,在中使用勾股定理计算即可【详解】(1)证明:四边形ABCD是矩形,ADBC,A=90,MDO=NBO,DMO=BNO,BD的垂直平分线MNBO=DO,在DMO和BNO中MDO=NBO,BO=DO,MOD=NOBDMO BNO(AAS)
20、,OM=ON,OB=OD,四边形BMDN是平行四边形,MNBDBMDN是菱形(2)四边形BMDN是菱形,MB=MD,设MD=x,则MB=DM=x,AM=(8-x)在RtAMB中,BM2=AM2+AB2即x2=(8-x)2+42,解得:x=1答:MD长为1【点睛】本题考查了矩形的性质,菱形的性质,及勾股定理,熟练使用以上知识是解题的关键22、(1)0;(2);【分析】(1)直接利用特殊角的三角函数值以及二次根式的性质和绝对值的性质分别化简得出答案;(2)先把不等式按照去括号、移项、合并同类项、系数化为1的方法求出其解集;再把不等式按照去分母、移项、合并同类项、系数化为1的方法求出其解集,最后求出
21、其公共解集即可;【详解】解:(1)原式0;(2)解不等式得,x4;解不等式得,;原不等式组的解集是;【点睛】本题主要考查了实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组,掌握实数的运算,零指数幂,特殊角的三角函数值,解一元一次不等式组是解题的关键.23、(1),;(2),绿化总费用的最大值为32500元.【分析】(1)将x=600、y=18000代入y1=k1x可得k1;将x=1000、y=26000代入y1=k2x+6000可得k2;(2)根据种花面积不小于,则种草面积小于等于,根据总费用=种草的费用+种花的费用列出二次函数解析式,然后依据二次函数的性质可得【详解】解:(1)由
22、图象可知,点在上,代入得:,解得,由图象可知,点在上,解得;(2)种花面积不小于,种草面积小于等于,由题意可得:,当时,有最大值为32500元.答:绿化总费用的最大值为32500元.【点睛】本题考查了一次函数的应用,以及二次函数的应用,掌握待定系数法求函数解析式及二次函数的性质是解题的关键24、(1);(2)1【分析】(1)先把化成,再代入计算即可;(2)根据特殊角的三角函数进行计算即可得出答案【详解】(1),+1,;(2)6cos2452tan30tan60,6()22,62,1【点睛】本题主要考查了比例的性质和特殊角的三角函数值,解答本题的关键是掌握比例的性质和几个特殊三角函数值.25、(
23、1)直线y=x+4,点B的坐标为(8,16);(2)点C的坐标为(,0),(0,0),(6,0),(32,0);(3)当M的横坐标为6时,MN+3PM的长度的最大值是1 【解析】(1)首先求得点A的坐标,然后利用待定系数法确定直线的解析式,从而求得直线与抛物线的交点坐标;(2)分若BAC=90,则AB2+AC2=BC2;若ACB=90,则AB2=AC2+BC2;若ABC=90,则AB2+BC2=AC2三种情况求得m的值,从而确定点C的坐标;(3)设M(a,a2),得MN=a2+1,然后根据点P与点M纵坐标相同得到x=,从而得到MN+3PM=a2+3a+9,确定二次函数的最值即可【详解】(1)点A是直线与抛物线的交点,且横坐标为-2,,A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 一年级写人作文我的新偶像450字9篇
- 辩论赛话题之环保作文(7篇)
- 我想如果有一天700字14篇
- 英国诗歌鉴赏入门:英语文学教学内容拓展
- 八月化妆品活动方案
- 公交党建活动方案
- 公交场站清理活动方案
- 关于节约自然资源的建议书550字9篇范文
- 公众号电影软件活动方案
- 公会赏花活动方案
- 中国工业清洗协会职业技能证考试(化学清洗)试题
- 山东省德州市宁津县房地产市场报告
- 苏州市五年级下学期期末数学试题题及答案
- CPK分析表的模板
- 《敬畏生命向阳而生》的主题班会
- 中华护理学会精神科专科护士理论考试试题
- 新能源电动汽车操作安全
- 中职生职业生涯规划课件PPT
- 《和谐与梦想》作业设计
- 企业清产核资报表
- 金融风险管理习题汇总第1-13章金融风险概述思考题-经济资本与风险调整绩效
评论
0/150
提交评论