




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1如图,点E是正方形ABCD的边DC上一点,把ADE绕点A顺时针旋转90到ABF的位置,若四边形AECF的面积为25,DE=3,则AE的长为()AB5C8D42下列关于抛物线有关性质的说法,正确的是( )A其图象的开口向下B其图象的对称轴为C其最
2、大值为D当时,随的增大而减小3的倒数是( )ABCD4与y=2(x1)2+3形状相同的抛物线解析式为( )Ay=1+x2By=(2x+1)2Cy=(x1)2Dy=2x25如图,点A、B、C都在O上,若ABC60,则AOC的度数是( )A100B110C120D1306如图,在ABC中,DEBC,若DE2,BC6,则( )ABCD7已知x1、x2是关于x的方程x2ax10的两个实数根,下列结论一定正确的是()Ax1x2Bx1x20Cx1x20D08八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )A95分,95分
3、B95分,90分C90分,95分D95分,85分9已知AB、CD是O的两条弦,ABCD,AB6,CD8,O的半径为5,则AB与CD的距离是()A1B7C1或7D无法确定10由几个相同的小正方体搭成的一个几何体如图所示,从正面看这个几何体得到的平面图形是( )ABCD二、填空题(每小题3分,共24分)11设、是方程x2+2018x20的两根,则(2+20181)(2+2018+2)_12RtABC中,已知C90,B50,点D在边BC上,BD2CD(如图)把ABC绕着点D逆时针旋转m(0m180)度后,如果点B恰好落在初始RtABC的边上,那么m_13某校有一块长方形的空地,其中长米,宽米,准备在
4、这块空地上修3条小路,路宽都一样为米,并且有一条路与平行,2条小路与平行,其余地方植上草坪,所种植的草坪面积为110米根据题意可列方程_14某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数,用表示这三个数中最小的数,例如,.请结合上述材料,求_.15如图,ABP是由ACD按顺时针方向旋转某一角度得到的,若BAP60,则在这一旋转过程中,旋转中心是_,旋转角度为_. 16将抛物线先向右平移个单位,再向下平移个单位,所得到的抛物线的函数解析式是_17如图,点M是反比例函数()图象上任意一点,ABy轴于B,点C是x轴上的动点,则ABC的面积为_
5、18点A(m,n2)与点B(2,n)关于原点对称,则点A的坐标为_三、解答题(共66分)19(10分)如图,两个转盘中指针落在每个数字上的机会相等,现同时转动、两个转盘,停止后,指针各指向一个数字小聪和小明利用这两个转盘做游戏:若两数之和为负数,则小聪胜;否则,小明胜你认为这个游戏公平吗?如果不公平,对谁更有利?请你利用树状图或列表法说明理由20(6分)如图,在平面直角坐标系中,ABC的顶点坐标为A(1,1)、B(0,2)、C(1,0),点P(0,2)绕点A旋转180得到点P1,点P1绕点B旋转180得到点P2,点P2绕点C旋转180得到点P3,(1)在图中画出点P1、P2、P3;(2)继续将
6、点P3绕点A旋转180得到点P4,点P4绕点B旋转180得到点P5,按此作法进行下去,则点P2020的坐标为21(6分)已知AB是O的直径,C,D是O上AB同侧两点,BAC26()如图1,若ODAB,求ABC和ODC的大小;()如图2,过点C作O的切线,交AB的延长线于点E,若ODEC,求ACD的大小22(8分)某图书馆2014年年底有图书20万册,预计2016年年底图书增加到28.8万册(1)求该图书馆这两年图书册数的年平均增长率;(2)如果该图书馆2017年仍保持相同的年平均增长率,请你预测2017年年底图书馆有图书多少万册?23(8分)如图,已知抛物线yx2+bx+c与x轴相交于A(1,
7、0),B(m,0)两点,与y轴相交于点C(0,3),抛物线的顶点为D(1)求B、D两点的坐标;(2)若P是直线BC下方抛物线上任意一点,过点P作PHx轴于点H,与BC交于点M,设F为y轴一动点,当线段PM长度最大时,求PH+HF+CF的最小值;(3)在第(2)问中,当PH+HF+CF取得最小值时,将OHF绕点O顺时针旋转60后得到OHF,过点F作OF的垂线与x轴交于点Q,点R为抛物线对称轴上的一点,在平面直角坐标系中是否存在点S,使得点D、Q、R、S为顶点的四边形为菱形,若存在,请直接写出点S的坐标,若不存在,请说明理由24(8分)某鱼塘中养了某种鱼5000条,为了估计该鱼塘中该种鱼的总质量,
8、从鱼塘中捕捞了3次,取得的数据如下:数量/条平均每条鱼的质量/kg第1次捕捞201.6第2次捕捞152.0第3次捕捞151.8(1)求样本中平均每条鱼的质量;(2)估计鱼塘中该种鱼的总质量;(3)设该种鱼每千克的售价为14元,求出售该种鱼的收入y(元)与出售该种鱼的质量x(kg)之间的函数关系,并估计自变量x的取值范围25(10分)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上,已知纸板的两条直角边DE=0.4m,EF=0.2m,测得边DF离地面的高度AC=1.5m,CD=8m,求树高26(10分)将笔记本电脑
9、放置在水平桌面上,显示屏OB与底板OA夹角为115(如图1),侧面示意图为图2;使用时为了散热,在底板下面垫入散热架OAC后,电脑转到AOB的位置(如图3),侧面示意图为图4,已知OA=OB=20cm,BOOA,垂足为C(1)求点O的高度OC;(精确到0.1cm)(2)显示屏的顶部B比原来升高了多少?(精确到0.1cm)(3)如图4,要使显示屏OB与原来的位置OB平行,显示屏OB应绕点O按顺时针方向旋转多少度?参考数据:(sin65=0.906,cos65=0.423,tan65=2.1cot65=0.446)参考答案一、选择题(每小题3分,共30分)1、A【分析】利用旋转的性质得出四边形AE
10、CF的面积等于正方形ABCD的面积,进而可求出正方形的边长,再利用勾股定理得出答案【详解】把顺时针旋转的位置,四边形AECF的面积等于正方形ABCD的面积等于25,中,故选A【点睛】此题主要考查了旋转的性质以及正方形的性质,正确利用旋转的性质得出对应边关系是解题关键2、D【分析】根据抛物线的表达式中系数a的正负判断开口方向和函数的最值问题,根据开口方向和对称轴判断函数增减性.【详解】解:a=20,抛物线开口向上,故A选项错误;抛物线的对称轴为直线x=3,故B选项错误;抛物线开口向上,图象有最低点,函数有最小值,没有最大值,故C选项错误;因为抛物线开口向上,所以在对称轴左侧,即x3时,y随x的增
11、大而减小,故D选项正确.故选:D.【点睛】本题考查二次函数图象和性质,掌握图象特征与系数之间的关系即数形结合思想是解答此题的关键.3、A【分析】根据乘积为1的两个数互为倒数进行解答即可【详解】解:1=1,的倒数是1故选A【点睛】本题考查了倒数的概念,熟记倒数的概念是解答此题的关键4、D【分析】抛物线的形状只是与a有关,a相等,形状就相同【详解】y=1(x1)1+3中,a=1故选D【点睛】本题考查了抛物线的形状与a的关系,比较简单5、C【分析】直接利用圆周角定理求解【详解】解:ABC和AOC所对的弧为,ABC=60,AOC=2ABC=260=120故选:C【点睛】本题考查了圆周角定理:在同圆或等
12、圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半6、D【解析】由DEBC知ADEABC,然后根据相似比求解【详解】解:DEBCADEABC.又因为DE2,BC6,可得相似比为1:3.即=.故选D.【点睛】本题主要是先证明两三角形相似,再根据已给的线段求相似比即可7、A【解析】根据方程的系数结合根的判别式,可得出=a1+40,进而可得出x1x1,此题得解【详解】=(a)141(1)=a1+40,方程x1ax1=0有两个不相等的实数根,x1x1故选A【点睛】本题考查了根的判别式,牢记“当0时,方程有两个不相等的实数根”是解题的关键8、A【详解】这组数据中95出现了3次,次数最多,为
13、众数;中位数为第3和第4两个数的平均数为95,故选A.9、C【分析】由于弦AB、CD的具体位置不能确定,故应分两种情况进行讨论:弦AB和CD在圆心同侧;弦AB和CD在圆心异侧;作出半径和弦心距,利用勾股定理和垂径定理求解即可.【详解】解:当弦AB和CD在圆心同侧时,如图,过点O作OFCD,垂足为F,交AB于点E,连接OA,OC,ABCD,OEAB,AB8,CD6,AE4,CF3,OAOC5,由勾股定理得:EO3,OF4,EFOFOE1;当弦AB和CD在圆心异侧时,如图,过点O作OEAB于点E,反向延长OE交AD于点F,连接OA,OC,EFOF+OE1,所以AB与CD之间的距离是1或1故选:C【
14、点睛】本题考查了垂径定理:垂直于弦的直径平分弦,并且平分弦所对的弧. 也考查了勾股定理及分类讨论的思想的应用.10、A【解析】根据题意,由题目的结构特点,依据题目的已知条件,正视图是有两行,第一行两个,第二行三个且右对齐,从而得出答案.即可得到题目的结论.【详解】从正面看到的平面图形是:,故选A.【点睛】此题主要考查的是简单的组合体的三视图等有关知识,题目比较简单,通过考查,了解学生对简单的组合体的三视图等知识的掌握程度.熟练掌握简单的组合体的三视图是解决本题的关键.二、填空题(每小题3分,共24分)11、4【分析】把、分别代入,可求得和的值,然后把求得的值代入计算即可.【详解】把、分别代入,
15、得和-2=0,和,=(2-1)(2+2)=4.故答案为4.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以一元二次方程的解也称为一元二次方程的根12、80或120【分析】本题可以图形的旋转问题转化为点B绕D点逆时针旋转的问题,故可以D点为圆心,DB长为半径画弧,第一次与原三角形交于斜边AB上的一点B,交直角边AC于B,此时DB=DB,DB=DB=2CD,由等腰三角形的性质求旋转角BDB的度数,在RtBCD中,解直角三角形求CDB,可得旋转角BDB的度数【详解】解:如图,在线段AB取一点B,使D
16、B=DB,在线段AC取一点B,使DB=DB,旋转角m=BDB=180-DBB-B=180-2B=80,在RtBCD中,DB=DB=2CD,CDB=60,旋转角BDB=180-CDB=120故答案为80或120【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等运用含30度的直角三角形三边的关系也是解决问题的关键13、【分析】根据题意算出草坪的长和宽,根据长方形的面积公式列式即可【详解】长方形长米,宽米,路宽为米,草坪的长为,宽为,草坪的面积为故答案为【点睛】本题主要考查了一元二次方程的应用,根据题意准确列式是解题的关键14、【
17、分析】找出这三个特殊角的三角函数值中最小的即可.【详解】,故答案为:【点睛】本题考查了特殊角的三角函数值以及最小值等知识,解题的关键是熟特殊角的三角函数值15、, 【分析】根据条件得出AD=AP,AC=AB,确定旋转中心,根据条件得出DAP=CAB=90,确定旋转角度数.【详解】解:ABP是由ACD按顺时针方向旋转而得,ABPACD,DAC=PAB=60,AD=AP,AC=AB,DAP=CAB=90,ABP是ACD以点A为旋转中心顺时针旋转90得到的.故答案为:A,90【点睛】本题考查旋转的性质,明确旋转前后的图形大小和形状不变,正确确定对应角,对应边是解答此题的关键.16、【分析】根据题意先
18、确定出原抛物线的顶点坐标,然后根据向右平移横坐标加,向下平移纵坐标减求出新图象的顶点坐标,然后写出即可【详解】解:抛物线的顶点坐标为(0,0),向右平移1个单位,再向下平移2个单位后的图象的顶点坐标为(1,-2),所以得到图象的解析式为.故答案为:.【点睛】本题主要考查的是函数图象的平移,根据平移规律“左加右减,上加下减”利用顶点的变化确定图形的变化是解题的关键17、1【解析】解:设A的坐标是(m,n),则mn=2,则AB=m,ABC的AB边上的高等于n,则ABC的面积=mn=1故答案为1点睛:本题主要考查了反比例函数的系数k的几何意义,ABC的面积=|k|,本知识点是中考的重要考点,同学们应
19、高度关注18、(2,1)【解析】关于原点对称的两个坐标点,其对应横纵坐标互为相反数.【详解】解:由题意得m=2,n-2=-n,解得n=1,故A点坐标为(2,1)【点睛】本题考查了关于原点中心对称的两个坐标点的特点.三、解答题(共66分)19、见解析【分析】首先根据题意列出表格,然后由表格即可求得所有等可能的结果与小力胜、小明胜的情况,继而求得小力胜与小明胜的概率,比较概率大小,即可知这个游戏是否公平【详解】列表得:两个数字之和 转盘A转盘B-102110132-2-3-20-1-1-2-110由两个转盘各转出一数字作积的所有可能情况有12种,每种情况出现的可能性相同,其中两个数字之和为非负数有
20、7个,负数有5个,对小明有利,这个游戏对双方不公平.【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平20、(1)见解析;(2) (2,2)【分析】(1)利用网格特点和旋转的性质画出点P1、P2、P3即可;(2)画出P1P6,寻找规律后即可解决问题【详解】解:(1)点P1、P2、P3如图所示,(2)(2,2)解析:如图所示:P1(2,0),P2(2,4),P3(0,4),P4(2,2)P5(2,2),P6(0,2)6次一个循环2020 6 = 336. 4P2020(2,2)【点睛】本题考查坐标与图形的性质、点的坐标等知识,解题的关键是循环探
21、究问题的方法,属于中考常考题型21、()ABC64,ODC71;()ACD19【分析】(I)连接OC,根据圆周角定理得到ACB=90,根据三角形的内角和得到ABC=65,由等腰三角形的性质得到OCD=OCAACD=70,于是得到结论;(II)如图2,连接OC,根据圆周角定理和切线的性质即可得到结论【详解】解:()连接OC,AB是O的直径,ACB90,BAC26,ABC64,ODAB,AOD90,ACDAOD9045,OAOC,OACOCA26,OCDOCA+ACD71,ODOC,ODCOCD71;()如图2,连接OC,BAC26,EOC2A52,CE是O的切线,OCE90,E38,ODCE,A
22、ODE38,ACDAOD19【点睛】本题考查切线的性质,圆周角定理,直角三角形的性质,正确的作出辅助线是解题的关键22、(1)20%(2)34.56【解析】试题分析:(1)经过两次增长,求年平均增长率的问题,应该明确原来的基数,增长后的结果设这两年的年平均增长率为x,则经过两次增长以后图书馆有书20(1+x)2万册,即可列方程求解;(2)利用求得的百分率,进一步求得2017年年底图书馆存图书数量即可试题解析:(1)设年平均增长率为x,根据题意得20(1+x)2=28.8,即(1+x)2=1.44,解得:x1=0.2,x2=2.2(舍去)答:该图书馆这两年图书册数的年平均增长率为20%;(2)2
23、8.8(1+0.2)=34.56(万册)答:预测2016年年底图书馆存图书34.56万册考点:一元二次方程的应用23、(1)B(3,0),D(1,4);(2);(3)存在,S的坐标为(3,0)或(1,2)或(1,2)或(1,)【分析】(1)将A(1,0)、C(0,3)代入yx2+bx+c,待定系数法即可求得抛物线的解析式,再配方即可得到顶点D的坐标,根据y0,可得点B的坐标;(2)根据BC的解析式和抛物线的解析式,设P(x,x22x3),则M(x,x3),表示PM的长,根据二次函数的最值可得:当x时,PM的最大值,此时P(,),进而确定F的位置:在x轴的负半轴了取一点K,使OCK30,过F作F
24、NCK于N,当N、F、H三点共线时,如图2,FH+FN最小,即PH+HF+CF的值最小,根据含30角的直角三角形的性质,即可得结论;(3)先根据旋转确定Q的位置,与点A重合,根据菱形的判定画图,分4种情况讨论:分别以DQ为边和对角线进行讨论,根据菱形的边长相等和平移的性质,可得点S的坐标【详解】(1)把A(1,0),点C(0,3)代入抛物线yx2+bx+c,得: ,解得:,抛物线的解析式为:yx22x3(x1)24,顶点D(1,4),当y0时,x22x30,解得:x3或1,B(3,0);(2)B(3,0),C(0,3),设直线BC的解析式为:ykx+b,则 ,解得:,直线BC的解析式为:yx3
25、,设P(x,x22x3),则M(x,x3),PM(x3)(x22x3)x2+3x(x)2+,当x时,PM有最大值,此时P(,),在x轴的负半轴了取一点K,使OCK30,过F作FNCK于N,FNCF,当N、F、H三点共线时,如图1,FH+FN最小,即PH+HF+CF的值最小,RtOCK中,OCK30,OC3,OK,OH,KH+,RtKNH中,KHN30,KNKH,NHKN,PH+HF+CF的最小值=PH+NH;(3)RtOFH中,OHF30,OH,OFOF,由旋转得:FOF60QOF30,在RtQFO中,QFOF=,OQ=2QF=2=1,Q与A重合,即Q(1,0)分4种情况:如图2,以QD为边时,由菱形和抛物线的对称性可得S(3,0);如图3,以QD为边时,由勾股定理得:AD,四边形DQSR是菱形,QSAD2,QSDR,S(1,2);如图4,同理可得:S(1,2);如图5,作AD的中垂线,交对称轴于R,可得菱形QSDR,A(1,0),D(1,4),AD的中点N的坐标为(0,2),且AD2,DN,cosADR,DR,QS= DR,S(1,);综上,S的坐标为(3,0)或(1,2)或(1,2)或(1,)【点睛】本题主要考查二次函数和几何图形的综合,添加合适的辅助线构造含30角的直角三角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年汽车美容师技能框架图解试题及答案
- 汽车维修工考试中常见问题的解决方案试题及答案
- 2024年CPBA考试的注意事项试题及答案
- 国际宠物营养标准对比考题试题及答案
- 2024年六年级语文实际应用试题及答案
- 二手车评估中的质量控制与监测试题及答案
- 二手车评估师考试常见问题及试题及答案
- 2024年计算机基础考试自信应战及答案
- 2024年计算机基础学习路径试题及答案
- 幼儿园指导纲要培训:艺术领域
- 2024年中考语文复习分类必刷:非连续性文本阅读(含答案解析)
- DL∕ T 949-2005 水工建筑物塑性嵌缝密封材料技术标准
- 河南科学技术出版社小学信息技术六年级上册教案
- 2024年红十字应急救护知识竞赛考试题库500题(含答案)
- TD/T 1061-2021 自然资源价格评估通则(正式版)
- 2024年四川省成都市高新区中考数学二诊试卷
- 2024年社区工作者考试必考1000题附完整答案【典优】
- WMT8-2022二手乘用车出口质量要求
- 30题质量检验员岗位常见面试问题含HR问题考察点及参考回答
- 智能灯具故障排除方案
- 20道瑞幸咖啡营运经理岗位常见面试问题含HR常问问题考察点及参考回答
评论
0/150
提交评论