版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、本文格式为Word版,下载可任意编辑第 页高三数学高考学问点总结 成功的道路上,确定会有失败;对于失败,我们要正确地看待和对待,不怕失败者,则必成功;怕失败者,则一无是处,会更失败。学习也是如此,不能被考试的一次失败打倒,下面是我给大家带来的高三数学高考学问点总结,期望能关怀到你! 高三数学高考学问点总结1 一、排列 1定义 (1)从n个不同元素中取出m个元素,依据确定的挨次排成一列,叫做从n个不同元素中取出m个元素的一排列。 (2)从n个不同元素中取出m个元素的全部排列的个数,叫做从n个不同元素中取出m个元素的排列数,记为Amn. 2排列数的公式与性质 (1)排列数的公式:Amn=n(n-1
2、)(n-2)(n-m+1) 特例:当m=n时,Amn=n!=n(n-1)(n-2)321 规定:0!=1 二、组合 1定义 (1)从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合 (2)从n个不同元素中取出m个元素的全部组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号Cmn表示。 2比较与鉴别 由排列与组合的定义知,获得一个排列需要“取出元素”和“对取出元素按确定挨次排成一列”两个过程,而获得一个组合只需要“取出元素”,不管怎样的挨次并成一组这一个步骤。 排列与组合的区分在于组合仅与选取的元素有关,而排列不仅与选取的元素有关,而且还与取出元素的挨次有
3、关。因此,所给问题是否与取出元素的挨次有关,是推断这一问题是排列问题还是组合问题的理论依据。 三、排列组合与二项式定理学问点 1.计数原理学问点 乘法原理:N=n1n2n3nM(分步)加法原理:N=n1+n2+n3+nM(分类) 2.排列(有序)与组合(无序) Anm=n(n-1)(n-2)(n-3)-(n-m+1)=n!/(n-m)!Ann=n! Cnm=n!/(n-m)!m! Cnm=Cnn-mCnm+Cnm+1=Cn+1m+1k?k!=(k+1)!-k! 3.排列组合混合题的解题原则:先选后排,先分再排 排列组合题的主要解题方法:优先法:以元素为主,应先满足特殊元素的要求,再考虑其他元素
4、.以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置. 捆绑法(集团元素法,把某些必需在一起的元素视为一个整体考虑) 插空法(解决相间问题)间接法和去杂法等等 在求解排列与组合应用问题时,应留意: (1)把具体问题转化或归结为排列或组合问题; (2)通过分析确定运用分类计数原理还是分步计数原理; (3)分析题目条件,避开“选取”时重复和遗漏; (4)列出式子计算和作答. 经常运用的数学思想是: 分类商量思想;转化思想;对称思想. 4.二项式定理学问点: (a+b)n=Cn0ax+Cn1an-1b1+Cn2an-2b2+Cn3an-3b3+Cnran-rbr+-+Cnn-1abn-1+Cnn
5、bn 特殊地:(1+x)n=1+Cn1x+Cn2x2+Cnrxr+Cnnxn 主要性质和主要结论:对称性Cnm=Cnn-m 二项式系数在中间。(要留意n为奇数还是偶数,答案是中间一项还是中间两项) 全部二项式系数的和:Cn0+Cn1+Cn2+Cn3+Cn4+Cnr+Cnn=2n 奇数项二项式系数的和=偶数项而是系数的和 Cn0+Cn2+Cn4+Cn6+Cn8+=Cn1+Cn3+Cn5+Cn7+Cn9+=2n-1 通项为第r+1项:Tr+1=Cnran-rbr作用:处理与指定项、特定项、常数项、有理项等有关问题。 5.二项式定理的应用:解决有关近似计算、整除问题,运用二项开放式定理并且结合放缩法
6、证明与指数有关的不等式。 6.留意二项式系数与项的系数(字母项的系数,指定项的系数等,指运算结果的系数)的区分,在求某几项的系数的和时留意赋值法的应用。 高三数学高考学问点总结2 不等式的解集: 能使不等式成立的未知数的值,叫做不等式的解。 一个含有未知数的不等式的全部解,组成这个不等式的解集。 求不等式解集的过程叫做解不等式。 新一轮中考复习备考周期正式开头,_我为各位初三考生整理了各学科的复习攻略,主要包括中考必考点、中考常考学问点、各科复习方法、考试答题技巧等内容,关怀各位考生梳理学问脉络,理清做题思路,期望各位考生可以在考试中取得优异成果!下面是2021中考数学学问点:不等式的判定,仅
7、供参考! 不等式的判定: 常见的不等号有“”“”“”“”及“”。分别读作“大于,小于,小于等于,大于等于,不等于”,其中“”又叫作不大于,“”叫作不小于; 在不等式“ab”或“a 不等号的开口所对的数较大,不等号的尖头所对的数较小; 在列不等式时,确定要留意不等式关系的关键字,如:正数、非负数、不大于、小于等等。 不等式分类: 不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“”“”连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)“”(大于等于符号)“”(小于等于符号)连接的不等式称为非严格不等式,或称广义不等式。 通常不等式中的数是实数,字母
8、也代表实数,不等式的一般形式为F(x,y,z)G(x,y,z)(其中不等号也可以为,中某一个),两边的解析式的公共定义域称为不等式的定义域,不等式既可以表达一个命题,也可以表示一个问题。 高三数学高考学问点总结3 1、集合的概念 集合是数学中最原始的不定义的概念,只能给出,描述性说明:某些制定的且不同的对象集合在一起就称为一个集合。组成集合的对象叫元素,集合通常用大写字母A、B、C、来表示。元素常用小写字母a、b、c、来表示。 集合是一个确定的整体,因此对集合也可以这样描述:具有某种属性的对象的全体组成的一个集合。 2、元素与集合的关系元素与集合的关系有属于和不属于两种:元素a属于集合A,记做
9、aA;元素a不属于集合A,记做a?A。 3、集合中元素的特性 (1)确定性:设A是一个给定的集合,x是某一具体对象,则x或者是A的元素,或者不是A的元素,两种状况必有一种且只有一种成立。例如A=0,1,3,4,可知0A,6?A。 (2)互异性:“集合张的元素必需是互异的”,就是说“对于一个给定的集合,它的任何两个元素都是不同的”。 (3)无序性:集合与其中元素的排列次序无关,如集合a,b,c与集合c,b,a是同一个集合。 4、集合的分类 集合科依据他含有的元素个数的多少分为两类: 有限集:含有有限个元素的集合。如“方程3x+1=0”的解组成的集合”,由“2,4,6,8,组成的集合”,它们的元素
10、个数是可数的,因此两个集合是有限集。 无限集:含有无限个元素的集合,如“到平面上两个定点的距离相等于全部点”“全部的三角形”,组成上述集合的元素不行数的,因此他们是无限集。 特殊的,我们把不含有任何元素的集合叫做空集,记错F,如x?R|+1=0。 5、特定的集合的表示 为了书写便利,我们规定常见的数集用特定的字母表示,下面是几种常见的数集表示方法,请牢记。 (1)全体非负整数的集合通常简称非负整数集(或自然数集),记做N。 (2)非负整数集内排出0的集合,也称正整数集,记做N_或N+。 (3)全体整数的集合通常简称为整数集Z。 (4)全体有理数的集合通常简称为有理数集,记做Q。 (5)全体实数的集合通常简称为实数集,记
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乳制品加工场地租赁合同
- 融资租赁协议解除协议
- 城市餐馆用地租赁合同范本
- 灾害救援塔吊租赁协议
- 垫资施工合同泵站工程
- 2024年专利许可保密协议
- 实习合同书模版
- 拖拉机买卖协议
- 商业楼宇备案授权函
- 村级医疗卫生招投标实施细则
- 【课件】第15课+权力与理性-17、18世纪西方美术+课件-高中美术人教版(2019)美术鉴赏
- 儿童早期的认知发展-皮亚杰前运算阶段(三座山实验)
- 国开一体化平台01588《西方行政学说》章节自测(1-23)试题及答案
- 2024年极兔速递有限公司招聘笔试参考题库附带答案详解
- 2024年威士忌酒相关公司行业营销方案
- 网络游戏危害课件
- 2024供电营业规则学习课件
- 铁路给水排水设计规范(TB 10010-2016)
- GINA2023-哮喘防治指南解读-课件
- 2024年上海市第二十七届初中物理竞赛初赛试题及答案
- 寝室设计方案方法与措施
评论
0/150
提交评论