




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1如图,点B,C,D在O上,若BCD30,则BOD的度数是( )A75B70C65D602若,相似比为,则与的周长比为( )ABCD3在实数3.14,中,倒
2、数最小的数是()ABCD3.144将n个边长都为1cm的正方形按如图所示的方法摆放,点A1,A2,An分别是正方形对角线的交点,则n个正方形重叠形成的重叠部分的面积和为()Acm2Bcm2C cm2D()ncm25用配方法解一元二次方程ax2+bx+c=0(a0),此方程可变形为()ABCD6如图所示,在O中,=,A=30,则B=( )A150B75C60D157抛物线yax2+bx+c(a1)如图所示,下列结论:abc1;点(3,y1),(1,y2)都在抛物线上,则有y1y2;b2(a+c)2;2ab1正确的结论有()A4个B3个C2个D1个8如图,将矩形ABCD沿对角线BD折叠,点C落在点
3、E处,BE交AD于点F,已知BDC=62,则DFE的度数为()A31B28C62D569如图,在ABCD中,R为BC延长线上的点,连接AR交BD于点P,若CR:AD2:3,则AP:PR的值为()A3:5B2:3C3:4D3:210若关于x的一元二次方程x22x+a10没有实数根,则a的取值范围是()Aa2Ba2Ca2Da2二、填空题(每小题3分,共24分)11方程的解是_12如图,点、在射线上,点、在射线上,且,.若和的面积分别为和,则图中三个阴影三角形面积之和为_.13边长为4cm的正三角形的外接圆半径长是_cm14点P(4,6)关于原点对称的点的坐标是_15如图,在等腰直角ABC中,C90
4、,将ABC绕顶点A逆时针旋转80后得到ABC,则CAB的度数为_16将抛物线向左平移2个单位后所得到的抛物线为 _17如图,在ABC中,ABC90,AB6,BC4,P是ABC的重心,连结BP,CP,则BPC的面积为_18已知两个二次函数的图像如图所示,那么 a1_a2(填“”、“”或“”)三、解答题(共66分)19(10分)综合与探究如图,在平面直角坐标系中,点的坐标分别为,点在轴上,其坐标为,抛物线经过点为第三象限内抛物线上一动点.求该抛物线的解析式.连接,过点作轴交于点,当的周长最大时,求点的坐标和周长的最大值.若点为轴上一动点,点为平面直角坐标系内一点.当点构成菱形时,请直接写出点的坐标
5、.20(6分)矩形中,线段绕矩形外一点顺时针旋转,旋转角为,使点的对应点落在射线上,点的对应点在的延长线上(1)如图1,连接、,则与的大小关系为_(2)如图2,当点位于线段上时,求证:;(3)如图3,当点位于线段的延长线上时,求四边形的面积21(6分)在矩形ABCD中,AB=12,P是边AB上一点,把PBC沿直线PC折叠,顶点B的对应点是点G,过点B作BECG,垂足为E且在AD上,BE交PC于点F(1)如图1,若点E是AD的中点,求证:AEBDEC;(2)如图2,求证:BP=BF;当AD=25,且AEDE时,求cosPCB的值;当BP=9时,求BEEF的值22(8分)如图1,ABC中,AB=A
6、C=4,BAC=,D是BC的中点小明对图1进行了如下探究:在线段AD上任取一点E,连接EB将线段EB绕点E逆时针旋转80,点B的对应点是点F,连接BF,小明发现:随着点E在线段AD上位置的变化,点F的位置也在变化,点F可能在直线AD的左侧,也可能在直线AD上,还可能在直线AD的右侧请你帮助小明继续探究,并解答下列问题:(1)如图2,当点F在直线AD上时,连接CF,猜想直线CF与直线AB的位置关系,并说明理由(2)若点F落在直线AD的右侧,请在备用图中画出相应的图形,此时(1)中的结论是否仍然成立,为什么?(3)当点E在线段AD上运动时,直接写出AF的最小值23(8分)如图,在等腰直角三角形AB
7、C中,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且连接EF并取EF的中点O,连接DO并延长至点G,使,连接DE,DF,GE,GF(1)求证:四边形EDFG是正方形;(2)直接写出当点E在什么位置时,四边形EDFG的面积最小?最小值是多少?24(8分)如图,海南省三沙市一艘海监船某天在黄岩岛P附近海域由南向北巡航,某一时刻航行到A处,测得该岛在北偏东30方向,海监船以20海里/时的速度继续航行,2小时后到达B处,测得该岛在北偏东75方向,求此时海监船与黄岩岛P的距离BP的长(结果精确到0.1海里,参考数据:tan753.732,sin750.966,sin150.2
8、59,1.414,1.732)25(10分)如图,在平面直角坐标系中,ABC的三个顶点坐标分别为A(1,4),B(4,2),C(3,5)(每个方格的边长均为1个单位长度)(1)请画出将ABC向下平移5个单位后得到的A1B1C1;(2)将ABC绕点O逆时针旋转90,画出旋转后得到的A2B2C2,并直接写出点B旋转到点B2所经过的路径长26(10分)如图,A=B=50,P为AB中点,点M为射线AC上(不与点A重合)的任意点,连接MP,并使MP的延长线交射线BD于点N,设BPN=(1)求证:APMBPN;(2)当MN=2BN时,求的度数;(3)若BPN的外心在该三角形的内部,直接写出的取值范围参考答
9、案一、选择题(每小题3分,共30分)1、D【分析】根据在同圆或等圆中,同弧或等弧所对的圆周角等于这条弧所对的圆心角的一半,即可求得答案【详解】BCD30,BOD2BCD23060故选:D【点睛】本题考查了圆的角度问题,掌握圆周角定理是解题的关键2、B【分析】根据相似三角形的性质:周长之比等于相似比解答即可.【详解】解:,相似比为,与的周长比为.故选:B.【点睛】本题考查的是相似三角形的性质,属于应知应会题型,熟练掌握相似三角形的性质是解题关键.3、A【解析】先根据倒数的定义计算,再比较大小解答【详解】解:在3.14,中,倒数最小的数是两个负数中一个,所以先求两个负数的倒数:的倒数是0.3183
10、,的倒数是4472,所以,故选:A【点睛】本题考查了倒数的定义解题的关键是掌握倒数的定义,会比较实数的大小4、B【分析】根据题意可得,阴影部分的面积是正方形的面积的,已知两个正方形可得到一个阴影部分,则n个这样的正方形重叠部分即为n-1阴影部分的和【详解】由题意可得阴影部分面积等于正方形面积的,即是,5个这样的正方形重叠部分(阴影部分)的面积和为4,n个这样的正方形重叠部分(阴影部分)的面积和为(n-1)=cm1故选B【点睛】考查了正方形的性质,解决本题的关键是得到n个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积5、A【解析】首先进行移项,然后把二次项系数化
11、为1,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方,右边是常数的形式【详解】ax2+bx+c=0,ax2+bx=c,x2+x=,x2+x+=+,(x+)2=.故选A.6、B【详解】在O中,=,AB=AC,ABC是等腰三角形,B=C;又A=30,B=75(三角形内角和定理)故选B考点:圆心角、弧、弦的关系7、B【分析】利用抛物线开口方向得到a1,利用抛物线的对称轴在y轴的左侧得到b1,利用抛物线与y轴的交点在x轴下方得到c1,则可对进行判断;通过对称轴的位置,比较点(-3,y1)和点(1,y2)到对称轴的距离的大小可对进行判断;由于(a+c)2-b2=(a+c-
12、b)(a+c+b),而x=1时,a+b+c1;x=-1时,a-b+c1,则可对进行判断;利用和不等式的性质可对进行判断【详解】抛物线开口向上,a1,抛物线的对称轴在y轴的左侧,a、b同号,b1,抛物线与y轴的交点在x轴下方,c1,abc1,所以正确;抛物线的对称轴为直线x,而11,点(3,y1)到对称轴的距离比点(1,y2)到对称轴的距离大,y1y2,所以正确;x1时,y1,即a+b+c1,x1时,y1,即ab+c1,(a+c)2b2(a+cb)(a+c+b)1,b2(a+c)2,所以正确;11,2ab,2ab1,所以错误故选:B【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物
13、线的开口方向和大小当a1时,抛物线向上开口;当a1时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时,对称轴在y轴左; 当a与b异号时,对称轴在y轴右常数项c决定抛物线与y轴交点:抛物线与y轴交于(1,c)抛物线与x轴交点个数由判别式确定:=b2-4ac1时,抛物线与x轴有2个交点;=b2-4ac=1时,抛物线与x轴有1个交点;=b2-4ac1时,抛物线与x轴没有交点8、D【解析】先利用互余计算出FDB=28,再根据平行线的性质得CBD=FDB=28,接着根据折叠的性质得FBD=CBD=28,然后利用三角形外角性质计算DFE的度数【详解】解:四边形ABCD为矩形
14、,ADBC,ADC=90,FDB=90-BDC=90-62=28,ADBC,CBD=FDB=28,矩形ABCD沿对角线BD折叠,FBD=CBD=28,DFE=FBD+FDB=28+28=56故选D【点睛】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等9、A【分析】证得ADPRBP,可得,由ADBC,可得【详解】在ABCD中,ADBC,且ADBC,ADPRBP,故选:A【点睛】此题主要考查相似三角形的判定与性质,解题的关键是熟知相似三角形的对应线段成比例.10、B【分析】根据题意得根的判别式,即可得出关于的一元一次不等式,解之即可得出结论【详解】
15、,由题意可知:,a2,故选:B【点睛】本题考查了一元二次方程(a0)的根的判别式:当,方程有两个不相等的实数根;当,方程有两个相等的实数根;当,方程没有实数根二、填空题(每小题3分,共24分)11、【分析】根据提公因式法解一元二次方程直接求解即可【详解】提公因式得解得故答案为【点睛】本题主要考查一元二次方程的解法,熟练掌握一元二次方程的解法是关键12、【分析】由已知可证,从而得到,利用和等高,可求出,同理求出另外两个三角形的面积,则阴影部分的面积可求.【详解】,. 和的面积分别为和 和等高同理可得阴影部分的面积为 故答案为42【点睛】本题主要考查相似三角形的判定及性质,掌握相似三角形的判定方法
16、及所求三角形与已知三角形之间的关系是解题的关键.13、【分析】经过圆心O作圆的内接正n边形的一边AB的垂线OC,垂足是C连接OA,则在直角OAC中,O OC是边心距r,OA即半径RAB2ACa根据三角函数即可求解【详解】解:连接中心和顶点,作出边心距那么得到直角三角形在中心的度数为:3603260,那么外接圆半径是42sin60;故答案为:【点睛】本题考查了等边三角形、垂径定理以及三角函数的知识,解答的关键在于做出辅助线、灵活应用勾股定理.14、 (4,6)【分析】根据两个点关于原点对称时,它们的坐标符号相反可得答案【详解】点P(4,6)关于原点对称的点的坐标是(4,6),故答案为:(4,6)
17、【点睛】本题考查了一点关于原点对称的问题,横纵坐标取相反数就是对称点的坐标15、125【分析】根据等腰直角三角形的性质得到CAB45,根据旋转的性质得到BAB80,结合图形计算即可【详解】解:ABC是等腰直角三角形,CAB45,由旋转的性质可知,BAB80,CABCAB+BAB125,故答案为:125【点睛】本题考查旋转的性质,关键在于熟练掌握基础性质.16、【分析】根据平移规律“左加右减,上加下减”即可写出表达式.【详解】根据函数的图形平移规律可知:抛物线向左平移2个单位后所得到的抛物线为.【点睛】本题考查了平移的知识,掌握函数的图形平移规律是解题的关键.17、1【分析】ABC的面积SABB
18、C12,延长BP交AC于点E,则E是AC的中点,且BPBE,即可求解【详解】解:ABC的面积SABBC12,延长BP交AC于点E,则E是AC的中点,且BPBE,(证明见备注)BEC的面积S6,BPBE,则BPC的面积BEC的面积1,故答案为:1备注:重心到顶点的距离与重心到对边中点的距离之比为2:1,例:已知:ABC,E、F是AB,AC的中点EC、FB交于G求证:EGCG 证明:过E作EHBF交AC于HAEBE,EHBF,AHHFAF,又AFCF,HFCF,HF:CF,EHBF,EG:CGHF:CF,EGCG【点睛】此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的
19、距离是它到对边中点的距离的2倍18、【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案【详解】解:如图所示:的开口小于的开口,则a1a2,故答案为:.【点睛】此题主要考查了二次函数的图象,正确记忆开口大小与a的关系是解题关键三、解答题(共66分)19、(1);(2)P(2,);(3)点的坐标为或或或.【分析】 代入A、B点坐标得出抛物线的交点式y=a(x+4)(x-2),然后代入C点坐标即可求出; 首先根据勾股定理可以求出AC=5,通过PEy轴,得到PEDAOC,PD:AO=DE:OC=PE:AC,得到PD:4=DE:3=PE:5,PD,DE分别用PE表示,可得PDE的周长=PE,要
20、使PDE周长最大,PE取最大值即可;设P点的横坐标a,那么纵坐标为a2+a-3,根据E点在AC所在的直线上,求出解析式,那么E点的横坐标a,纵坐标-a-3,从而求出PE含a的二次函数式,求出PE最大值,进而求出P点坐标及PDE周长. 分类讨论 当BM为对角线时点F在y轴上,根据对称性得到点F的坐标. 当BM为边时,BC也为边时,求出BC长直接可以写出F点坐标,分别是点M在轴负半轴上时,点F的坐标为;点M在轴正半轴上时,点F的坐标为. 当BM为边时,BC也为对角线时,首先求出BC所在直线的解析式,然后求出BC中点的坐标,MF所在直线也经过这点并且与BC所在的直线垂直,所以可以求出MF所在直线的解
21、析式,可以求出M点坐标,求出F点的横坐标,代入MF解析式求出纵坐标,得到F【详解】解:抛物线经过点,它们的坐标分别为,故设其解析式为.又抛物线经过点,代入解得,则抛物线的解析式为.,.又轴,PDEAOC.,即,的周长则要使周长最大,取最大值即可.易得所在直线的解析式为.设点,则,当时,取得最大值,最大值为,则.点的坐标为或或或提示:具体分情况进行讨论,如图. 为对角线时,显然,点在轴上,根据对称性得到点的坐标为;当为边时,则有以下几种情况:(I)为边时,点在轴负半轴上时,点的坐标为;点在轴正半轴上时,点的坐标为.(I) 为对角线时,根据点,点可得所在直线的解析式为中点的坐标为则MF所在的直线过
22、线段的中点,并垂直于,得到其解析式为.交轴于点,则点的横坐标为,代入的解析式得到,故点的坐标为,综上所述,点的坐标为或或或【点睛】此题主要考查了二次函数的综合问题,熟练掌握二次函数、一次函数以及菱形的相关性质是解题的关键,注意分类讨论.20、(1)相等;(2)见解析;(3)【分析】(1)由旋转得:旋转角相等,可得结论;(2)证明AOBEOF(SAS),得OAB=OEF,根据平角的定义可得结论;(3)如解图,根据等腰三角形的性质得:OFB=OBF=30,OAE=AEO=30,根据30度角的直角三角形的性质分别求得OB、OG、BF,勾股定理求得BE的长,再根据三角形面积公式即可求得结论【详解】(1
23、)由旋转得:AOE=BOF=,故答案为:相等;(2),在AOB和EOF中,AOBEOF(SAS),OA=OE,;(3)如图,过点O作 ,垂足为G,根据旋转的性质知:BOF=120,AOB=EOF,OB=OF,BOF中,OFB=OBF=30,ABO=60,AOE中,AOE=120,OA=OE,OAE=AEO=30,AOB=90,在AOB和EOF中,AOBEOF(SAS),在中,AOB=90,OAB=30,在中,OGB=90,OBG=30,在中,EBF=90,【点睛】本题是四边形的综合题,题目考查了几何图形的旋转变换,四边形的面积,直角三角形30度角的性质等知识,解决此类问题的关键分析图形的旋转情
24、况,在旋转过程中,旋转角相等,对应线段相等21、(1)证明见解析;(2)证明见解析;1. 【解析】(1)先判断出A=D=90,AB=DC再判断出AE=DE,即可得出结论;(2)利用折叠的性质,得出PGC=PBC=90,BPC=GPC,进而判断出GPF=PFB即可得出结论;判断出ABEDEC,得出比例式建立方程求解即可得出AE=9,DE=16,再判断出ECFGCP,进而求出PC,即可得出结论;判断出GEFEAB,即可得出结论【详解】(1)在矩形ABCD中,A=D=90,AB=DC,E是AD中点,AE=DE,在ABE和DCE中,ABEDCE(SAS);(2)在矩形ABCD,ABC=90,BPC沿P
25、C折叠得到GPC,PGC=PBC=90,BPC=GPC,BECG,BEPG,GPF=PFB,BPF=BFP,BP=BF;当AD=25时,BEC=90,AEB+CED=90,AEB+ABE=90,CED=ABE,A=D=90,ABEDEC,设AE=x,DE=25x,x=9或x=16,AEDE,AE=9,DE=16,CE=20,BE=15,由折叠得,BP=PG,BP=BF=PG,BEPG,ECFGCP,设BP=BF=PG=y,y=,BP=,在RtPBC中,PC=,cosPCB=;如图,连接FG,GEF=BAE=90,BFPG,BF=PG=BP,BPGF是菱形,BPGF,GFE=ABE,GEFEAB
26、,BEEF=ABGF=129=1【点睛】此题是四边形综合题,主要考查了矩形的性质,全等三角形的判定和性质,相似三角形的判定和性质,折叠的性质,利用方程的思想解决问题是解本题的关键22、(1),证明见解析;(2)成立,证明见解析;(3)AF的最小值为1【分析】(1)结合题意,根据旋转的知识,得, ,再根据三角形内角和性质,得;结合AB=AC=1,D是BC的中点,推导得,即可完成解题;(2)由(1)可知:EB=EF=EC,得到B,F,C三点共圆,点E为圆心,得BCF=BEF=10,从而计算得,完成求解;(3)由(1)和(2)知,CFAB,因此得点F的运动路径在CF上;故当点E与点A重合时,AF最小
27、,从而完成求解.【详解】(1)将线段EB绕点E逆时针旋转80,点B的对应点是点F, ,即AB=AC=1,D是BC的中点,, , (2)如图,连接BE、EC、BF、EF由(1)可知:EB=EF=ECB,F,C三点共圆,点E为圆心BCF=BEF=10, ,(1)中的结论仍然成立(3)由(1)和(2)知,点F的运动路径在CF上如图,作AMCF于点M点E在线段AD上运动时,点B旋转不到点M的位置故当点E与点A重合时,AF最小此时AF1=AB=AC=1,即AF的最小值为1【点睛】本题考查了旋转、等腰三角形及底边中线、垂直平分线、全等三角形、三角形内角和、平行线、圆心角、圆周角的知识;解题的关键是熟练掌握
28、等腰三角形、旋转、垂直平分线、平行线、圆心角和圆周角的知识,从而完成求解23、(1)详见解析;(2)当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4【解析】(1)连接CD,根据等腰直角三角形的性质可得出A=DCF=45、AD=CD,结合AE=CF可证出ADECDF(SAS),根据全等三角形的性质可得出DE=DF、ADE=CDF,通过角的计算可得出EDF=90,再根据O为EF的中点、GO=OD,即可得出GDEF,且GD=2OD=EF,由此即可证出四边形EDFG是正方形;(2)过点D作DEAC于E,根据等腰直角三角形的性质可得出DE的长度,从而得出2DE2,再根据正方形的面积公式即可得出四边形EDFG的面积的最小值【详解】(1)证明:连接CD,如图1所示.为等腰直角三角形,D是AB的中点,在和中, ,, ,为等腰直角三角形. O为EF的中点,且,四边形EDFG是正方形; (2)解:过点D作于E,如图2所示.为等腰直角三角形,点E为AC的中点, (点E与点E重合时取等号).当点E为线段AC的中点时,四边形EDFG的面积最小,该最小值为4【点睛】本题考查了正方形的判定与性质、等腰直角三角形以及全等三角形的判定与性质,解题的关键是:(1)找出GDEF且GD=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纤支镜检查的护理
- 1岁以下婴儿培训课件
- 房地产项目合作开发合同书
- 语文课外阅读特色课程
- 乐器电商课程介绍
- 规范楷书系统课件
- 德法形策课程介绍
- 河北石油职业技术大学《生物医学工程整合课程》2023-2024学年第二学期期末试卷
- 人教版数学六年级下册第二单元《百分数(二)》同步练习含答案
- 遂宁能源职业学院《插画创作》2023-2024学年第二学期期末试卷
- 山东省国控设计集团有限公司招聘笔试真题2024
- 2024年山东水利技师学院招聘初级专业技术岗位人员考试真题
- 2024年广东公需课《百县千镇万村高质量发展工程与城乡区域协调发展》试题及答案
- 2025版《保障中小企业款项支付条例》学习解读课件
- 2025年浙江安防职业技术学院单招职业技能测试题库必考题
- 奔驰事故留修专员年终总结
- 2025电工(高级技师)技能鉴定精练考试指导题库及答案(浓缩500题)
- 患者隐私保护培训课件
- 《校园安全教育(第二版)》 课件全套 项目1-8 走进安全教育 -确保实习安全
- 2025年人民法院信息技术服务中心招聘应届高校毕业生高频重点模拟试卷提升(共500题附带答案详解)
- 2025年全球及中国财务报表审计服务行业头部企业市场占有率及排名调研报告
评论
0/150
提交评论