版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2022-2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1某班学生做“用频率估计概率”的实验时,给出的某一结果出现的频率折线图,则符合这一结果的实验可能是()A抛一枚硬币,出现正面朝上B从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数C从一个装有6个红球和3个黑球的袋子中任取一球,
2、取到的是黑球D一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃2在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为()ABCD13某校九年级(1)班在举行元旦联欢会时,班长觉得快要毕业了,决定临时增加一个节目:班里面任意两名同学都要握手一次小张同学统计了一下,全班同学共握手了465次你知道九年级(1)班有多少名同学吗?设九年级(1)班有x名同学,根据题意列出的方程是()A=465B=465Cx(x1)=465Dx(x+1)=4654如图,是由等腰直角经过位似变换得到的,位似中心在轴的正半轴,已知,点坐标为,位似比为,
3、则两个三角形的位似中心点的坐标是( )ABCD5我市组织学生开展志愿者服务活动,小晴和小霞从“图书馆,博物馆,科技馆”三个场馆中随机选择一个参加活动,两人恰好选择同一场馆的概率是()ABCD6如图,把长40,宽30的矩形纸板剪掉2个小正方形和2个小矩形(阴影部分即剪掉部分),将剩余的部分折成一个有盖的长方体盒子,设剪掉的小正方形边长为(纸板的厚度忽略不计),若折成长方体盒子的表面积是950,则的值是( )A3B4C4.8D57已知平面直角坐标系中有两个二次函数及的图象,将二次函数的图象依下列哪一种平移方式后,会使得此两图象对称轴重叠( )A向左平移4个单位长度B向右平移4个单位长度C向左平移1
4、0个单位长度D向右平移10个单位长度8把抛物线向右平移l个单位,然后向下平移3个单位,则平移后抛物线的解析式为( )ABCD9已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A3B-3C-1D110如图,以原点O为圆心,半径为1的弧交坐标轴于A,B两点,P是 上一点(不与A,B重合),连接OP,设POB=,则点P的坐标是()A(sin,sin)B(cos,cos)C(cos,sin)D(sin,cos)11如图,点C、D在圆O上,AB是直径,BOC=110,ADOC,则AOD=( )A70B60C50D4012如图,在菱形中,是的中点,将绕点逆时针旋转至点与点重合,此时点旋转
5、至处,则点在旋转过程中形成的、线段、点在旋转过程中形成的与线段所围成的阴影部分的面积为( )ABCD二、填空题(每题4分,共24分)13有4根细木棒,它们的长度分别是2cm、4cm、6cm、8cm从中任取3根恰好能搭成一个三角形的概率是_14如图,边长为的正方形网格中,的顶点都在格点上,则的面积为_ ; 若将绕点顺时针旋转,则顶点所经过的路径长为_15如图,已知一次函数y=kx3(k0)的图象与x轴,y轴分别交于A,B两点,与反比例函数y=(x0)交于C点,且AB=AC,则k的值为_16设分别为一元二次方程的两个实数根,则_17两地的实际距离是,在地图上众得这两地的距离为,则这幅地图的比例尺是
6、_18某扇形的弧长为cm,面积为3cm2,则该扇形的半径为_cm三、解答题(共78分)19(8分)如图,在平行四边形中,点在边上,连接交于点,则的面积与的面积之比为多少?20(8分)如图,已知三个顶点的坐标分别为, (1)请在网格中,画出线段关于原点对称的线段;(2)请在网格中,过点画一条直线,将分成面积相等的两部分,与线段相交于点,写出点的坐标;(3)若另有一点,连接,则 21(8分)如图1,已知抛物线yx2+bx+c经过点A(3,0),点B(1,0),与y轴负半轴交于点C,连接BC、AC(1)求抛物线的解析式;(2)在抛物线上是否存在点P,使得以A、B、C、P为顶点的四边形的面积等于ABC
7、的面积的倍?若存在,求出点P的坐标;若不存在,请说明理由(3)如图2,直线BC与抛物线的对称轴交于点K,将直线AC绕点C按顺时针方向旋转,直线AC在旋转过程中的对应直线AC与抛物线的另一个交点为M求在旋转过程中MCK为等腰三角形时点M的坐标22(10分)一只不透明的袋子中,装有2个白球,1个红球,1个黄球,这些球除颜色外都相同请用列表法或画树形图法求下列事件的概率:(1)搅匀后从中任意摸出1个球,恰好是白球(2)搅匀后从中任意摸出2个球,2个都是白球(3)再放入几个除颜色外都相同的黑球,搅匀后从中任意摸出1个球,恰好是黑球的概率为,求放入了几个黑球?23(10分)某学校开展了主题为“垃圾分类,
8、绿色生活新时尚”的宣传活动,为了解学生对垃圾分类知识的掌握情况,该校环保社团成员在校园内随机抽取了部分学生进行问卷调查将他们的得分按优秀、良好、合格、不合格四个等级进行统计,并绘制了如下不完整的统计表和条形统计图请根据图表信息,解答下列问题:本次调查随机抽取了_ 名学生:表中 ; 补全条形统计图:若全校有名学生,请你估计该校掌握垃圾分类知识达到“优秀和“良好”等级的学生共有多少人24(10分)如图1,在平面直角坐标系中,二次函数的图象与轴交于两点,点为抛物线的顶点,为线段中点.(1)求的值;(2)求证:;(3)以抛物线的顶点为圆心,为半径作,点是圆上一动点,点为的中点(如图2);当面积最大时,
9、求的长度;若点为的中点,求点运动的路径长.25(12分)如图,在中,.将绕点逆时针方向旋转60得到,连接,求线段的长26已知直线yx+3交x轴于点A,交y轴于点B,抛物线yx2+bx+c经过点A,B(1)求抛物线解析式;(2)点C(m,0)在线段OA上(点C不与A,O点重合),CDOA交AB于点D,交抛物线于点E,若DEAD,求m的值;(3)点M在抛物线上,点N在抛物线的对称轴上,在(2)的条件下,是否存在以点D,B,M,N为顶点的四边形为平行四边形?若存在,请求出点N的坐标;若不存在,请说明理由参考答案一、选择题(每题4分,共48分)1、C【分析】根据统计图可知,试验结果在0.33附近波动,
10、即其概率P0.33,计算四个选项的频率,约为0.33者即为正确答案【详解】解:A、抛一枚硬币,出现正面朝上的频率是0.5,故本选项错误;B、从标有1,2,3,4,5,6的六张卡片中任抽一张,出现偶数频率约为:0.5,故本选项错误;C、从一个装有6个红球和3个黑球的袋子中任取一球,取到的是黑球概率是0.33,故本选项正确;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率是0.25,故本选项错误;故选:C【点睛】本题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率=所求情况数与总情况数之比同时此题在解答中要用到概率公式2、C【详解】解:共有4个球,红球有
11、1个,摸出的球是红球的概率是:P=故选C【点睛】本题考查概率公式3、A【解析】因为每位同学都要与除自己之外的(x1)名同学握手一次,所以共握手x(x1)次,由于每次握手都是两人,应该算一次,所以共握手x(x1)2次,解此方程即可.【详解】解:设九年级(1)班有x名同学,根据题意列出的方程是 =465,故选A【点睛】本题主要考查一元二次方程在实际生活中的应用,明白两人握手应该只算一次并据此列出方程是解题的关键.4、A【分析】先确定G点的坐标,再结合D点坐标和位似比为1:2,求出A点的坐标;然后再求出直线AG的解析式,直线AG与x的交点坐标,即为这两个三角形的位似中心的坐标.【详解】解:ADC与E
12、OG都是等腰直角三角形OE=OG=1G点的坐标分别为(0,-1)D点坐标为D(2,0),位似比为1:2,A点的坐标为(2,2)直线AG的解析式为y=x-1直线AG与x的交点坐标为(,0)位似中心P点的坐标是故答案为A【点睛】本题考查了位似中心的相关知识,掌握位似中心是由位似图形的对应项点的连线的交点是解答本题的关键5、A【分析】画树状图(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)展示所有9种等可能的结果数,找出两人恰好选择同一场馆的结果数,然后根据概率公式求解【详解】解:画树状图为:(用A、B、C分别表示“图书馆,博物馆,科技馆”三个场馆)共有9种等可能的结果数,其中两人恰好选择
13、同一场馆的结果数为3,所以两人恰好选择同一场馆的概率,故选:A【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率6、D【分析】观察图形可知阴影部分小长方形的长为,再根据去除阴影部分的面积为950,列一元二次方程求解即可【详解】解:由图可得出,整理,得,解得,(不合题意,舍去)故选:D【点睛】本题考查的知识点是一元二次方程的应用,根据图形找出阴影部分小长方形的长是解此题的关键7、C【分析】将二次函数解析式展开,结合二次函数的性质找出两个二次函数的对称轴,二者做差后即可得出平移方向及距离.【
14、详解】解:=ax2+6ax-7a, =bx2-14bx-15b二次函数的对称轴为直线x=-3, 二次函数的对称轴为直线x=7,-3-7=-10,将二次函数的图象向左平移10个单位长度后,会使得此两图象对称轴重叠,故选C. 【点睛】本题考查的是二次函数的图象与几何变换以及二次函数的性质,熟知二次函数的性质是解答此题的关键8、D【分析】根据题意原抛物线的顶点坐标为(0,0),根据平移规律得平移后抛物线顶点坐标为(1,-3),根据抛物线的顶点式求解析式【详解】解:抛物线形平移不改变解析式的二次项系数,平移后顶点坐标为(1,-3),平移后抛物线解析式为故选:D【点睛】本题考查抛物线的平移与抛物线解析式
15、的联系,关键是把抛物线的平移转化为顶点的平移,利用顶点式求解析式9、B【分析】由关于原点对称的两个点的坐标之间的关系直接得出a、b的值即可.【详解】点A(1,a)、点B(b,2)关于原点对称,a=2,b=1,a+b=3.故选B.【点睛】关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.10、C【解析】过P作PQOB,交OB于点Q,在直角三角形OPQ中,利用锐角三角函数定义表示出OQ与PQ,即可确定出P的坐标解:过P作PQOB,交OB于点Q,在RtOPQ中,OP=1,POQ=,sin=,cos=,即PQ=sin,OQ=cos,则P的坐标为(cos,sin),故选C11、D【分析】
16、根据平角的定义求得AOC的度数,再根据平行线的性质及三角形内角和定理即可求得AOD的度数【详解】BOC110,BOCAOC180AOC70ADOC,ODOADA70AOD1802A40故选:D【点睛】此题考查圆内角度求解,解题的关键是熟知圆的基本性质、平行线性质及三角形内角和定理的运用12、C【分析】根据菱形的性质可得AD=AB=4,DAB=180,AE=,然后根据旋转的性质可得:SABE=SADF,FAE=DAB=60,最后根据S阴影=S扇形DABSADFSABES扇形FAE即可求出阴影部分的面积.【详解】解:在菱形中,是的中点,AD=AB=4,DAB=180,AE=,绕点逆时针旋转至点与点
17、重合,此时点旋转至处,SABE=SADF,FAE=DAB=60S阴影=S扇形DABSADFSABES扇形FAE= S扇形DABS扇形FAE=故选:C.【点睛】此题考查的是菱形的性质、旋转的性质和扇形的面积公式,掌握菱形的性质定理、旋转的性质和扇形的面积公式是解决此题的关键.二、填空题(每题4分,共24分)13、【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8,所以恰好能搭成一个三角形的概率故答案为【点
18、睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数14、3.5; 【分析】(1)利用ABC所在的正方形的面积减去四周三个直角三角形的面积,列式计算即可得解;(2)根据勾股定理列式求出AC,然后利用弧长公式列式计算即可得解【详解】(1)ABC的面积33231312,931.5-13.5;(2)由勾股定理得,AC,所以,点A所经过的路径长为故答案为:3.5;【点睛】本题考查了利用旋转的性质,弧长的计算,熟练掌握网格结构,求出AC的长是解题的关键15、k= 【解析】试题分析:如图:作CDx轴于D,则OBCD,AOBADC,A
19、B=AC,OB=CD,由直线y=kx3(k0)可知B(0,3),OB=3,CD=3,把y=3代入y=(x0)解得,x=4,C(4,3),代入y=kx3(k0)得,3=4k3,解得k=,故答案为考点:反比例函数与一次函数的交点问题16、-2025【分析】根据一元二次方程根与系数的关系即可得出,将其代入中即可求出结论【详解】解:,分别为一元二次方程的两个实数根,则 故答案为:【点睛】本题考查了根与系数的关系,根据一元二次方程根与系数的关系得出,是解题的关键17、1:1【分析】图上距离和实际距离已知,依据“比例尺=图上距离:实际距离”即可求得地图的比例尺【详解】解:因为,所以这幅地图的比例尺是故答案
20、为:1:1【点睛】本题考查比例尺比例尺=图上距离:实际距离,在计算比例尺时一定要将实际距离与地图上的距离的单位化统一18、1【分析】根据扇形的面积公式S,可得出R的值【详解】解:扇形的弧长为cm,面积为3cm2,扇形的面积公式S,可得R 故答案为1【点睛】本题考查了扇形面积的求法,掌握扇形面积公式是解答本题的关键.三、解答题(共78分)19、SDFE:SBFA=9:1【解析】先证明DFEBFA,再求出DE:AB的值,根据两个相似三角形面积之比等于相似比的平方求解即可【详解】解:四边形ABCD为平行四边形,DCAB, DFEBFA, DE:EC=3:1,DE:DC=3:4,DE:AB=3:4,S
21、DFE:SBFA=9:1【点睛】本题考查了相似三角形的性质以及判定,掌握相似三角形的判定以及两个相似三角形面积之比等于相似比的平方是解题的关键20、(1)见解析;(2)见解析,;(3)1.【分析】(1)分别作出点B、C关于原点对称的点,然后连接即可;(2)根据网格特点,找到AB的中点D,作直线CD,根据点D的位置写出坐标即可;(3)连接BP,证明BPC是等腰直角三角形,继而根据正切的定义进行求解即可.【详解】(1)如图所示,线段B1C1即为所求作的;(2)如图所示,D(-1,-4);(3)连接BP,则有BP2=32+12=10,BC2=32+12=10,BC2=42+22=20,BP2+BC2
22、=PC2,BPC是等腰直角三角形,PBC=90,BCP=45,tanBCP=1,故答案为1.【点睛】本题考查了作图中心对称,三角形中线的性质,勾股定理的逆定理,正切,熟练掌握相关知识并能灵活运用网格的结构特征是解题的关键.21、(1)yx2x;(2)存在符合条件的点P,且坐标为(,)、(,)、(1,)、(2,);(3)点M的坐标是(2,)或(1,)【分析】(1)知道A、B两点坐标后,利用待定系数法可确定该抛物线的解析式(2)此题中,以A、B、C、P为顶点的四边形可分作两部分,若该四边形的面积是ABC面积的1.5倍,那么四边形中除ABC以外部分的面积应是ABC面积的一半,分三种情况:当点P在x轴
23、上方时,ABP的面积应该是ABC面积的一半,因此点P的纵坐标应该是点C纵坐标绝对值的一半,代入抛物线解析式中即可确定点P的坐标;当点P在B、C段时,显然BPC的面积要远小于ABC面积的一半,此种情况不予考虑;当点P在A、C段时,由A、C的长以及ACP的面积可求出点P到直线AC的距离,首先在射线CK上取线段CD,使得CD的长等于点P到直线AC的距离,先求出过点D且平行于l1的直线解析式,这条直线与抛物线的交点即为符合条件的点P(3)从题干的旋转条件来看,直线l1旋转的范围应该是直线AC、直线BC中间的部分,而MCK的腰和底并不明确,所以分情况讨论:CKCM、KCKM、MCMK;求出点M的坐标【详
24、解】解:(1)如图1,点A(3,0),点B(1,0),解得,则该抛物线的解析式为:yx2x; (2)易知OA3、OB1、OC,则:SABCABOC42当点P在x轴上方时,由题意知:SABPSABC,则:点P到x轴的距离等于点C到x轴距离的一半,即 点P的纵坐标为;令yx2x,化简得:2x24x90解得 x;P1(,)、P2(,);当点P在抛物线的B、C段时,显然BCP的面积要小于SABC,此种情况不合题意;当点P在抛物线的A、C段时,SACPAChSABC,则h1;在射线CK上取点D,使得CDh1,过点D作直线DEAC,交y轴于点E,如图2;在RtCDE中,ECDBCO30,CD1,则CE、O
25、EOC+CE ,点E(0,)直线DE:yx,联立抛物线的解析式,有:,解得: 或,P3(1,-)、P4(2,-);综上,存在符合条件的点P,坐标为(,),(,),(1,-),(2,-);(3)如图3,由(1)知:yx2-x-(x1)2,抛物线的对称轴 x1;当KCKM时,点C、M1关于抛物线的对称轴x1对称,则点M1的坐标是(2,);KCCM时,K(1,2),KCBC则直线AC与抛物线的另一交点M2与点B重合,M、C、K三点共线,不能构成三角形;当MKMC时,点D是CK的中点OCA60,BCO30,BCA90,即BCAC,则作线段KC的中垂线必平行AC且过点D,点M3与点P3(1,-)、P4(
26、2,-)重合, 综上所述,点M的坐标是(2,)或(1,)【点睛】该题考查了利用待定系数法确定函数解析式,图形面积的解法以及等腰三角形的判定和性质等重点知识;后两题涉及的情况较多,应分类进行讨论,容易漏解22、(1);(2);(3)n1【分析】(1)摸到白球的可能为2种,根据求概率公式即可得到答案;(2)利用树状图法,即可得到概率;(3)设放入黑球n个,根据摸到黑球的概率,即可求出n的值.【详解】解:(1)根据题意,恰好摸到白球有2种,将“恰好是白球”记为事件A,P(A);(2)由树状图,如下:事件总数有12种,恰好抽到2个白球有2种,将“2个都是白球”记为事件B,P(B);(3)设放入n个黑球
27、,由题意得:,解得:n1【点睛】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比解题的关键是掌握求概率的方法.23、(1)50,20,0.12;(2)详见解析;(3)1【分析】(1)根据总数频率=频数,即可得到答案;(2)根据统计表的数据,即可画出条形统计图;(3)根据全校总人数达到“优秀和“良好”等级的学生的百分比,即可得到答案【详解】本次调查随机抽取了名学生,故答案为:;补全条形统计图如图所示:(人),答:该校掌握垃圾分类知识达到“优秀和“良好”等级的学生共有1多少人【点睛】本题主要考查频数统计表和条形统计图,掌握统计表和条形统计图的特征,是解题的关键24、(1)
28、,;(2)证明见解析;(3)或;.【分析】(1)将代入二次函数的解析式即可求解;(2)证得是等边三角形即可证得结论;(3)根据题意,当或时,或面积最大,利用三角形中位线定理可求得的长,利用勾股定理可求得,即可求得答案;根据点M的运动轨迹是半径为2的,则的中点的运动轨迹也是圆,同样,的中点的运动轨迹也是圆,据此即可求得答案【详解】二次函数的图象与轴交于两点,解得:,故答案为:,;(2)由(1)得:抛物线的解析式为,二次函数的图象与轴交于两点,抛物线的对称轴为:,顶点的坐标为:,是等边三角形,为线段中点,;(3)为定值,当时,面积最大,如图,由(2)得,点为线段中点,点为的中点,,三点共线,在Rt中,;同理,当时,面积最大,同理可求得:;故答案为:或;如图,点E的运动轨迹是,半径为,的中点的运动轨迹也是圆,半径为1,的中点M的运动轨迹也是圆,半径为,点M运动的路径长为:故答案为:【点睛】主要考查了二次函数的综合,二次函数的解析式的求法和与几何图形结合的综合能
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 走路视频课件教学课件
- 交通运输垫资施工合同
- 企业财务管理与预算执行
- 互联网网络工程师劳动合同范本
- 二手房买卖合同示范
- 个人住房借款协议样本
- IT企业安全生产管理制度范本
- 个人租车协议书节日购物
- 绿色之旅课件教学课件
- 人事管理信息化提高效率
- GB/T 6974.3-2024起重机术语第3部分:塔式起重机
- 绵阳市高中2022级(2025届)高三第一次诊断性考试(一诊)数学试卷(含答案逐题解析)
- 绵阳市高中2022级(2025届)高三第一次诊断性考试(一诊)化学试卷
- 人教版八年级上册生物全册教案(完整版)教学设计含教学反思
- 大学数学《概率论与数理统计》说课稿
- 2024年度2024行政复议法培训
- 培训师授课评分表
- 田麦久《运动训练学》(第2版)配套题库(含考研真题)
- MACD二次绿柱缩短的选股公式.doc
- 尾矿库闭库工程施工组织设计方案范本
- 化工企业事故案例分析(中毒事故)
评论
0/150
提交评论