几何概率公理化定义_第1页
几何概率公理化定义_第2页
几何概率公理化定义_第3页
几何概率公理化定义_第4页
几何概率公理化定义_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、关于几何概率公理化定义第一张,PPT共三十四页,创作于2022年6月 把有限个样本点推广到无限个样本点的场合,人们引入了几何概型. 由此形成了确定概率的另一方法 几何方法. 概率的古典定义具有可计算性的优点,但它也有明显的局限性.要求样本点有限,如果样本空间中的样本点有无限个, 概率的古典定义就不适用了.第二张,PPT共三十四页,创作于2022年6月一、几何概率定义1.4 第三张,PPT共三十四页,创作于2022年6月定义1.5 当随机试验的样本空间是某个区域,并且任意一点落在度量 (长度, 面积, 体积) 相同的子区域是等可能的,则事件 A 的概率可定义为说明 当古典概型的试验结果为连续无穷

2、多个时,就归结为几何概率.第四张,PPT共三十四页,创作于2022年6月 几何概型的概率的性质(1) 对任一事件A ,有第五张,PPT共三十四页,创作于2022年6月 那末 两人会面的充要条件为例1 甲、乙两人相约在 0 到 T 这段时间内, 在预定地点会面. 先到的人等候另一个人, 经过时间 t( t0)的一些平行直线,现向此平面任意投掷一根长为b( a )的针,试求针与任一平行直线相交的概率.解蒲丰资料第八张,PPT共三十四页,创作于2022年6月由投掷的任意性可知,这是一个几何概型问题.第九张,PPT共三十四页,创作于2022年6月第十张,PPT共三十四页,创作于2022年6月蒲丰投针试

3、验的应用及意义第十一张,PPT共三十四页,创作于2022年6月历史上一些学者的计算结果(直线距离a=1) 3.179585925200.54191925Reina 3.1415929180834080.831901Lazzerini 3.159548910300.751884Fox 3.1373826001.01860De Morgan 3.1554121832040.61855Smith 3.1596253250000.81850Wolf相交次数投掷次数针长时间试验者第十二张,PPT共三十四页,创作于2022年6月利用蒙特卡罗(Monte-Carlo)法进行计算机模拟单击图形播放/暂停 ES

4、C键退出第十三张,PPT共三十四页,创作于2022年6月 1933年 , 苏联数学家柯尔莫哥洛夫提出了概率论的公理化结构 ,给出了概率的严格定义 ,使概率论有了迅速的发展.二、概率的公理化定义与性质柯尔莫哥洛夫资料第十四张,PPT共三十四页,创作于2022年6月概率的可列可加性1. 概率的定义1.7第十五张,PPT共三十四页,创作于2022年6月证明由概率的可列可加性得2. 性质第十六张,PPT共三十四页,创作于2022年6月概率的有限可加性证明由概率的可列可加性得第十七张,PPT共三十四页,创作于2022年6月证明第十八张,PPT共三十四页,创作于2022年6月证明第十九张,PPT共三十四页

5、,创作于2022年6月证明由图可得又由性质 3 得因此得第二十张,PPT共三十四页,创作于2022年6月推广 三个事件和的情况n 个事件和的情况第二十一张,PPT共三十四页,创作于2022年6月解第二十二张,PPT共三十四页,创作于2022年6月ABAB第二十三张,PPT共三十四页,创作于2022年6月第二十四张,PPT共三十四页,创作于2022年6月第二十五张,PPT共三十四页,创作于2022年6月例3 在1100的整数中随机地取一个数,问取到的整数既不能被6整除, 又不能被8整除的概率是多少 ? 设 A 为事件“取到的数能被6整除”,B为事件“取到的数能被8整除”则所求概率为解第二十六张,

6、PPT共三十四页,创作于2022年6月于是所求概率为第二十七张,PPT共三十四页,创作于2022年6月2. 最简单的随机现象古典概型 古典概率 几何概型试验结果连续无穷三、小结1. 频率 (波动) 概率(稳定).第二十八张,PPT共三十四页,创作于2022年6月3. 概率的主要性质第二十九张,PPT共三十四页,创作于2022年6月例2 甲、乙两人约定在下午1 时到2 时之间到某站乘公共汽车 , 又这段时间内有四班公共汽车它们的开车时刻分别为 1:15、1:30、1:45、2:00.如果它们约定 见车就乘; 求甲、乙同乘一车的概率.假定甲、乙两人到达车站的时刻是互相不牵连的,且每人在1时到2 时

7、的任何时刻到达车站是等可能的.第三十张,PPT共三十四页,创作于2022年6月见车就乘的概率为设 x, y 分别为甲、乙两人到达的时刻,则有解第三十一张,PPT共三十四页,创作于2022年6月Born: 25 April 1903 in Tambov,Tambov province,RussiaDied: 20 Oct 1987 in Moscow,Russia柯尔莫哥洛夫资料Andrey NikolaevichKolmogorov第三十二张,PPT共三十四页,创作于2022年6月蒲丰资料Born: 7 Sept 1707 in Montbard, Cte dOr, FranceDied: 16 April 178

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论