高中数学 第三章 概率 3.1 随机事件的概率 3.1.1-3.1.2 随机事件的概率 概率的意义教学案 新人教A版必修3_第1页
高中数学 第三章 概率 3.1 随机事件的概率 3.1.1-3.1.2 随机事件的概率 概率的意义教学案 新人教A版必修3_第2页
高中数学 第三章 概率 3.1 随机事件的概率 3.1.1-3.1.2 随机事件的概率 概率的意义教学案 新人教A版必修3_第3页
高中数学 第三章 概率 3.1 随机事件的概率 3.1.1-3.1.2 随机事件的概率 概率的意义教学案 新人教A版必修3_第4页
高中数学 第三章 概率 3.1 随机事件的概率 3.1.1-3.1.2 随机事件的概率 概率的意义教学案 新人教A版必修3_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、31.1& 3.1.2随机事件的概率概率的意义预习课本P108118,思考并完成以下问题(1)随机事件、必然事件、不可能事件的概念分别是什么? (2)必然事件与随机事件有何区别? eq avs4al(新知初探)1随机事件、必然事件、不可能事件事件确定事件必然事件在条件S下,一定会发生的事件,叫做相对于条件S的必然事件不可能事件在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件随机事件在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件(1)前提:对于给定的随机事件A,在相同的条件S下重复n次试验,观察事件A是否出现(2)频数:指的是n次试验中事件A出现的次数nA.频率:

2、指的是事件A出现的比例fn(A)eq f(nA,n).3概率(1)定义:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率(2)范围:0,1(3)意义:概率从数量上反映了随机事件发生的可能性的大小4对概率的正确理解随机事件在一次试验中发生与否是随机的,但随机性中含有规律性,认识了这种随机性中的规律性,就能比较准确地预测随机事件发生的可能性eq avs4al(小试身手)1下列事件:长度为3,4,5的三条线段可以构成一个直角三角形;经过有信号灯的路口,遇上红灯;从10个玻璃杯(其中8个正品;2个次品)中,任取3个,3个

3、都是次品;下周六是晴天其中,是随机事件的是()ABCD解析:选D为必然事件;对于,次品总数为2,故取到的3个不可能都是次品,所以是不可能事件;为随机事件2“李晓同学一次掷出3枚骰子,3枚全是6点”的事件是()A不可能事件B必然事件C可能性较大的随机事件 D可能性较小的随机事件解析:选D掷出的3枚骰子全是6点,可能发生,但发生的可能性较小3“某彩票的中奖概率为eq f(1,100)”意味着()A买100张彩票就一定能中奖B买100张彩票能中一次奖C买100张彩票一次奖也不中D购买彩票中奖的可能性为eq f(1,100)解析:选D概率是描述事件发生的可能性大小4在天气预报中,有“降水概率预报”例如

4、,预报“明天降水概率为85%”,这是指()A明天该地区有85%的地区降水,其他15%地区不降水B明天该地区约有85%的时间降水,其他时间不降水C气象台的专家中,有85%的人认为会降水,另外15%的专家认为不降水D明天该地区降水的可能性为85%解析:选D概率的本质含义是事件发生的可能性大小,因此D正确事件的分类典例指出下列事件是必然事件、不可能事件还是随机事件:(1)某人购买福利彩票一注,中奖500万元;(2)三角形的内角和为180;(3)没有空气和水,人类可以生存下去;(4)同时抛掷两枚硬币一次,都出现正面向上;(5)从分别标有1,2,3,4的四张标签中任取一张,抽到1号标签;(6)科学技术达

5、到一定水平后,不需任何能量的“永动机”将会出现解(1)购买一注彩票,可能中奖,也可能不中奖,所以是随机事件(2)所有三角形的内角和均为180,所以是必然事件(3)空气和水是人类生存的必要条件,没有空气和水,人类无法生存,所以是不可能事件(4)同时抛掷两枚硬币一次,不一定都是正面向上,所以是随机事件(5)任意抽取,可能得到1,2,3,4号标签中的任一张,所以是随机事件(6)由能量守恒定律可知,不需任何能量的“永动机”不会出现,所以是不可能事件对事件分类的两个关键点(1)条件:在条件S下事件发生与否是与条件相对而言的,没有条件,无法判断事件是否发生;(2)结果发生与否:有时结果较复杂,要准确理解结

6、果包含的各种情况活学活用指出下列事件是必然事件、不可能事件,还是随机事件(1)我国东南沿海某地明年将受到3次冷空气的侵袭;(2)抛掷硬币10次,至少有一次正面向上;(3)同一门炮向同一目标发射多枚炮弹,其中50%的炮弹击中目标;(4)没有水分,种子发芽解:(1)我国东南沿海某地明年可能受到3次冷空气侵袭,也可能不是3次,是随机事件(2)抛掷硬币10次,也可能全是反面向上,也可能有正面向上,是随机事件(3)同一门炮向同一目标发射,命中率可能是50%,也可能不是50%,是随机事件(4)没有水分,种子不可能发芽,是不可能事件.利用频率与概率的关系求概率典例某公司在过去几年内使用某种型号的灯管1 00

7、0支,该公司对这些灯管的使用寿命(单位:小时)进行了统计,统计结果如表所示:分组500,900)900,1 100)1 100,1 300)频数48121208频率1 300,1 500)1 500,1 700)1 700,1 900)1 900,)22319316542(1)求各组的频率;(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率解(1)频率依次是:0.048,0.121,0.208,0.223,0.193,0.165,0.042.(2)样本中寿命不足1 500小时的频数是48121208223600,所以样本中寿命不足1 500小时的频率是eq f(600,1 000

8、)0.6.即灯管使用寿命不足1 500小时的概率约为0.6.随机事件概率的理解及求法(1)理解:概率可看作频率理论上的期望值,它从数量上反映了随机事件发生的可能性的大小当试验的次数越来越多时,频率越来越趋近于概率当次数足够多时,所得频率就近似地看作随机事件的概率(2)求法:通过公式fn(A)eq f(nA,n)eq f(m,n)计算出频率,再由频率估算概率活学活用国家乒乓球比赛的用球有严格标准,下面是有关部门对某乒乓球生产企业某批次产品的抽样检测,结果如表所示:抽取球数目501002005001 0002 000优等品数目45921944709541 902优等品频率(1)计算表中优等品的各个

9、频率;(2)从这批产品中任取一个乒乓球,质量检测为优等品的概率约是多少?解:(1)如表所示:抽取球数目501002005001 0002 000优等品数目45921944709541 902优等品频率4(2)根据频率与概率的关系,可以认为从这批产品中任取一个乒乓球,质量检测为优等品的概率约是0.95.概率含义的理解典例(1)下列说法正确的是()A由生物学知道生男、生女的概率均约为0.5,一对夫妇先后生两小孩,则一定为一男一女B一次摸奖活动中,中奖概率为0.2,则摸5张票,一定有一张中奖C10张票中有1张奖票,10人去摸,谁先摸则谁摸到奖票的可能性大(2)某工厂生产的产品合格率是99.99%,这

10、说明()A该厂生产的10 000件产品中不合格的产品一定有1件B该厂生产的10 000件产品中合格的产品一定有9 999件C合格率是99.99%,很高,说明该厂生产的10 000件产品中没有不合格产品D该厂生产的产品合格的可能性是99.99%解析(1)一对夫妇生两小孩可能是(男,男),(男,女),(女,男),(女,女),所以A不正确;中奖概率为0.2是说中奖的可能性为0.2,当摸5张票时,可能都中奖,也可能中一张、两张、三张、四张,或者都不中奖,所以B不正确;10张票中有1张奖票,10人去摸,每人摸到的可能性是相同的,即无论谁先摸,摸到奖票的概率都是0.1,所以C不正确,D正确(2)合格率是9

11、9.99%,是指该工厂生产的每件产品合格的可能性大小,即合格的概率答案(1)D(2)D从三个方面理解概率的意义(1)概率是随机事件发生可能性大小的度量,是随机事件A的本质属性,随机事件A发生的概率是大量重复试验中事件A发生的频率的近似值(2)由概率的定义我们可以知道随机事件A在一次试验中发生与否是随机的,但随机中含有规律性,而概率就是其规律性在数量上的反映(3)正确理解概率的意义,要清楚概率与频率的区别与联系对具体的问题要从全局和整体上去看待,而不是局限于某一次试验或某一个具体的事件活学活用如果掷一枚质地均匀的硬币,连续5次正面向上,有人认为下次出现反面向上的概率大于eq f(1,2),这种理

12、解对吗?解:这种理解不正确掷一枚质地均匀的硬币,作为一次试验,其结果是随机的,但通过大量的试验,其结果呈现出一定的规律性,即“正面向上”“反面向上”的可能性都是eq f(1,2).连续5次正面向上这种结果是可能的,但对下一次试验来说,仍然是随机的,其出现正面向上和反面向上的可能性还是eq f(1,2),而不会大于eq f(1,2).概率的应用典例(1)同时向上抛100个铜板,结果落地时100个铜板朝上的面都相同,你认为这100个铜板更可能是下面哪种情况()A这100个铜板两面是一样的B这100个铜板两面是不同的C这100个铜板中有50个两面是一样的,另外50个两面是不相同的D这100个铜板中有

13、20个两面是一样的,另外80个两面是不相同的(2)某转盘被平均分成10等份(如图所示),转动转盘,当转盘停止后,指针指向的数字即为转出的数字游戏规则如下:两个人参加,先确定猜数方案,甲转动转盘,乙猜,若猜出的结果与转盘转出的数字所表示的特征相符,则乙获胜,否则甲获胜猜数方案从以下两种方案中选一种:A猜“是奇数”或“是偶数”;B猜“是4的整数倍数”或“不是4的整数倍数”请回答下列问题:如果你是乙,为了尽可能获胜,你会选哪种猜数方案?为了保证游戏的公平性,你认为应选哪种猜数方案?解析(1)落地时100个铜板朝上的面都相同,根据极大似然法可知,这100个铜板两面是一样的可能性较大答案:A(2)解:为

14、了尽可能获胜,乙应选择方案B,猜“不是4的整数倍数”,这是因为“不是4的整数倍数”的概率为eq f(8,10)0.8,超过了0.5,故为了尽可能获胜,选择方案B.为了保证游戏的公平性,应当选择方案A,这是因为方案A猜“是奇数”和“是偶数”的概率均为0.5,从而保证了该游戏的公平性1极大似然法的应用在“风险与决策”中经常会遇到统计中的极大似然法:如果我们面临的是从多个可以选择的答案中挑选正确答案的决策问题,那么“使得样本出现的可能性最大”可以作为决策的准则,这种判断问题的方法称为极大似然法2概率的实际应用由于概率体现了随机事件发生的可能性,所以在现实生活中我们可以根据随机事件概率的大小去预测事件

15、能否发生从而对某些事情作出决策当某随机事件的概率未知时,可用样本出现的频率去近似估计总体中该事件发生的概率活学活用为了估计水库中鱼的尾数,可以使用以下的方法:先从水库中捕出一定数量的鱼,例如2 000尾,给每尾鱼作上记号,不影响其存活,然后放回水库,经过适当时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾, 查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数解:设水库中鱼的尾数为n,假定每尾鱼被捕的可能性是相等的,从水库中任捕一尾,设事件A带有记号的鱼,易知P(A)eq f(2 000,n),第二次从水库中捕出500尾,观察其中带有记号的鱼有40尾,

16、即事件A发生的频数m40,由概率的统计定义可知P(A)eq f(40,500),由两式,得eq f(2 000,n)eq f(40,500),解得n25 000.所以估计水库中约有鱼25 000尾层级一学业水平达标1在1,2,3,10这10个数字中,任取3个数字,那么“这三个数字的和大于6”这一事件是()A必然事件B不可能事件C随机事件 D以上选项均不正确解析:选C若取1,2,3,则和为6,否则和大于6,所以“这三个数字的和大于6”是随机事件2在25件同类产品中,有2件次品,从中任取3件产品,其中不可能事件为()A3件都是正品 B至少有1件次品C3件都是次品 D至少有1件正品解析:选C25件产

17、品中只有2件次品,所以不可能取出3件都是次品3事件A发生的概率接近于0,则()A事件A不可能发生B事件A也可能发生C事件A一定发生 D事件A发生的可能性很大解析:选B不可能事件的概率为0,但概率接近于0的事件不一定是不可能事件4高考数学试题中,有12道选择题,每道选择题有4个选项,其中只有1个选项是正确的,则随机选择其中一个选项正确的概率是eq f(1,4),某家长说:“要是都不会做,每题都随机选择其中一个选项,则一定有3道题答对”这句话()A正确 B错误C不一定 D无法解释解析:选B把解答一个选择题作为一次试验,答对的概率是eq f(1,4)说明了对的可能性大小是eq f(1,4).做12道

18、选择题,即进行了12次试验,每个结果都是随机的,那么答对3道题的可能性较大,但是并不一定答对3道题,也可能都选错,或有2,3,4,甚至12个题都选择正确层级二应试能力达标1下面事件:某项体育比赛出现平局;抛掷一枚硬币,出现反面;全球变暖会导致海平面上升;一个三角形的三边长分别为1,2,3.其中是不可能事件的是()A BC D解析:选D三角形的三条边必须满足两边之和大于第三边2在掷一枚硬币的试验中,共掷了100次,“正面朝上”的频率为0.49,则“正面朝下”的次数为()A0.49 B49C0.51 D51解析:选D正面朝下的频率为10.490.51,次数为0.5110051次3聊城市交警部门在调

19、查一起车祸过程中,所有的目击证人都指证肇事车是一辆普通桑塔纳出租车,但由于天黑,均未看清该车的车牌号码及颜色,而聊城市有两家出租车公司,其中甲公司有100辆桑塔纳出租车,3 000辆帕萨特出租车;乙公司有3 000辆桑塔纳出租车,100辆帕萨特出租车,交警部门应认定肇事车为哪个公司的车辆较合理?()A甲公司 B乙公司C甲、乙公司均可 D以上都对解析:选B由题意得肇事车是甲公司的概率为eq f(1,31),是乙公司的概率为eq f(30,31),由极大似然法可知认定肇事车为乙公司的车辆较为合理4抛掷一枚质地均匀的硬币,如果连续抛掷1 000次,那么第999次出现正面朝上的概率是()A.eq f(

20、1,999)B.eq f(1,1 000)C.eq f(999,1 000) D.eq f(1,2)解析:选D抛掷一枚质地均匀的硬币,只考虑第999次,有两种结果:正面朝上,反面朝上,每种结果等可能出现,故所求概率为eq f(1,2).5下列给出五个事件:某地2月3日下雪;函数yax(a0,且a1)在定义域上是增函数;实数的绝对值不小于0;在标准大气压下,水在1 结冰;a,bR,则abba.其中必然事件是_;不可能事件是_;随机事件是_解析:由必然事件、不可能事件、随机事件的定义即可得到答案答案:6一家保险公司想了解汽车的挡风玻璃破碎的概率,公司收集了20 000部汽车的相关信息,时间是从某年的5月1日到下一年的5月1日,共发现有600部汽车的挡风玻璃破碎,则一部汽车在一年内挡风玻璃破碎的概率近似是_解析:Peq f(600,20 000)0.03.7一个总体分为A,B两层,用分层抽样方法从总体中抽取一个容量为10的样本已知B层中每个个体被抽到的概率都为eq f(1,12),则总体中的个体数为_解析:设总体中的个体数为x,则eq f(10,x)eq f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论