单尺度一维离散小波变换DWT的Mallat算法C 和MATLAB实现_第1页
单尺度一维离散小波变换DWT的Mallat算法C 和MATLAB实现_第2页
单尺度一维离散小波变换DWT的Mallat算法C 和MATLAB实现_第3页
单尺度一维离散小波变换DWT的Mallat算法C 和MATLAB实现_第4页
单尺度一维离散小波变换DWT的Mallat算法C 和MATLAB实现_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、单尺度一维离散小波变换DWT的Mallat算法C+和MATLAB实现 小波学习之一(单尺度一维离散小波变换DWT的Mallat算法 C+和 MATLAB实现) 来源:/v_hyx/article/details/8557071 1 Mallat算法 离散序列的Mallat算法分解公式如下: 其中,H(n)、G(n)分别表示所选取的小波函数对应的低通和高通滤波器的抽头系数序列。 从Mallat算法的分解原理可知,分解后的序列就是原序列与滤波器序列的卷积再进行隔点抽取而来。 离散序列的Mallat算法重构公式如下: 其中,h(n)、g(n)分别表示所选取的小波函数对应的低通和高通滤波器的抽头系数序

2、列。 2 小波变换实现过程(C/C+) 2.1 小波变换结果序列长度 小波的Mallat算法分解后的序列长度由原序列长SoureLen和滤波器长FilterLen决定。从Mallat算法的分解原理可知,分解后的序列就是原序列与滤波器序列的卷积再进行隔点抽取而来。即分解抽取的结果长度为(SoureLen+FilterLen-1)/2。 2.2 获取滤波器组 对于一些通用的小波函数,简单起见,可以通过Matlab的wfilters(wavename)获取4个滤波器;特殊的小波函数需要自行构造获得。 下面以db1小波函数(Haar小波)为例,其变换与重构滤波器组的结果如下: cppview plai

3、ncopyprint? 1. /matlab输入获取命令 2. Lo_D,Hi_D,Lo_R,Hi_R = wfilters(db1) 3. 4. /获取的结果 5. Lo_D = 6. 0.7071 0.7071 7. Hi_D = 8. -0.7071 0.7071 9. Lo_R = 10. 0.7071 0.7071 11. Hi_R = 12. 0.7071 -0.7071 2.3 信号边界延拓 在Mallat算法中,假定输入序列是无限长的,而实际应用中输入的信号是有限的采样序列,这就会出现信号边界处理问题。对于边界信号的延拓一般有3种方法,即零延拓、对称延拓和周期延拓。 3种延拓方

4、法比较情况如下: 对于正交小波变换来说,前两种延拓方法实现起来比较简单,但重建时会产生边界效应,而且分解的层数越多,产生的边界效应越显著。零延拓方法给人一种跳跃的感觉。至于对称性延拓,由于正交小波滤波器一般都是非对称性的(Haar小波基虽然是正交的,但它是非连续的),重建图象给人一种错位的感觉。相比较而言,只有最后一种延拓方式可以得到比较精确的重建结果,它不仅能保证分解与重建正确计算,而且恢复的质量也好。不过,周期性延拓方法虽然是常用的三种方法中比较好的方法,但会导致信号边缘的非连续性,从而会使得较高频率(子带)层的小波系数很大,即使信号本身相当平滑。从信号压缩的角度看,大的系数是希望避免的。

5、信号的对称延拓可避免边缘的非连续性问题。然而,对称延拓只能和 对称的小波滤波器一起适用。如果降低正交性要求,选择双正交小波变换,对称性延拓不失为一种好的方法。周期延拓可适用于任何小波变换,但可能导致输入序列边缘的不连续,使得高频系数较大。而对称延拓则避免了输入序列边界的不连续,是当前广泛采用的一种延拓方法。 下式中给出了最常用的对称延拓表达式。 当原序列长sLEN为偶数时延拓后的序列长为sLEN+2*(filterLEN),而原序列长为奇数时则需要在右端再延拓一个元素。注:在Matlab中默认使用了对称延拓。 2.4 小波分解 在db1小波函数下,离散序列的Mallat算法分解公式展开如下:

6、其它的db 小波,不再详述。小波分解C+ 源码如下。 cppview plaincopyprint? 1. /* 2. * brief 小波变换之分解 3. * paramsourceData源数据 4. * paramdataLen源数据长度 5. * paramdb过滤器类型 6. * paramcA分解后的近似部分序列-低频部分 7. * paramcD分解后的细节部分序列-高频部分 8. * return 9. * 正常则返回分解后序列的数据长度,错误则返回-1 10. */ 11. int Wavelet:Dwt(double *sourceData, intdataLen, Fil

7、ter db, double *cA, double *cD) 12. 13. if(dataLen 2) 14. return -1; 15. if(NULL = sourceData)|(NULL = cA)|(NULL = cD) 16. return -1; 17. 18. m_db = db; 19. intfilterLen = m_db.length; 20. intn,k,p; 21. intdecLen = (dataLen+filterLen-1)/2; 22. doubletmp=0; 23. coutdecLen=decLenendl; 24. 25. for(n=0;

8、 ndecLen; n+) 26. 27. cAn = 0; 28. cDn = 0; 29. for(k=0; kfilterLen; k+) 30. 31. p = 2*n-k+1; 32. 33. / 信号边沿对称延拓 34. if(p=-filterLen+1) 35. tmp = sourceData-p-1; 36. else if(pdataLen-1)&(p=0)&(pdataLen-1) 39. tmp = sourceDatap; 40. else 41. tmp = 0; 42. 43. / 分解后的近似部分序列-低频部分 44. cAn += m_db.lowFilte

9、rDeck*tmp; 45. 46. / 分解后的细节部分序列-高频部分 47. cDn += m_db.highFilterDeck*tmp; 48. 49. 50. 51. 52. return decLen; 53. 2.5 小波重构 cppview plaincopyprint? 1. /* 2. * brief 小波变换之重构 3. * paramcA分解后的近似部分序列-低频部分 4. * paramcD分解后的细节部分序列-高频部分 5. * paramcALength输入数据长度 6. * paramdb过滤器类型 7. * paramrecData重构后输出的数据 8. */

10、 9. void Wavelet:Idwt(double *cA, double *cD, intcALength, Filter db, double *recData) 10. 11. if(NULL = cA)|(NULL = cD)|(NULL = recData) 12. return; 13. 14. m_db = db; 15. intfilterLen = m_db.length; 16. 17. intn,k,p; 18. intrecLen = 2*cALength-filterLen+1; 19. coutrecLen=recLenendl; 20. 21. for(n=

11、0; nrecLen; n+) 22. 23. recDatan = 0; 24. for(k=0; k=0)&(pfilterLen) 30. 31. recDatan += m_db.lowFilterRecp*cAk + m_db.highFilterRecp*cDk; 32. /coutrecDatan=recDatanendl; 33. 34. 35. 36. 37. 2.6 c+实现结果 3 小波变换实现(MATLAB) 使用matlab小波工具箱实现db4的情况如下。 1、MatlabDB4.m文件内容。 cppview plaincopyprint? 1. %加载txt数据示例

12、 2. s=importdata(data2.txt); %load data2.txt; 3. subplot(521);plot(s); %画出原始信号的波形图 4. title(原始信号); 5. 6. cA,cD=dwt(s,db4); %采用db4小波并对信号进行一维离散小波分解。 7. y=idwt(cA,cD,db4); %一维离散小波反变换 8. subplot(522); 9. plot(cA); %画出波形图 10. title(MATLAB低频部分dwt-cA); 11. 12. subplot(523); 13. plot(cD); %画出波形图 14. title(MATLAB高频部分dwt-cD); 15. 16. subplot(524); 17. plot(y); %画出波形图 18. title(MATLAB重构idwt); 2、波形图如下。 4 小结 在此,采用C

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论