版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(共10小题,每小题3分,共30分)1如图1,在ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是( )APDBPBCPEDPC2下列运算正确的是( )A=x5BC=D3+2
2、 3如图,内接于,若,则ABCD4下列所给函数中,y随x的增大而减小的是()Ay=x1By=2x2(x0)CDy=x+15小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时后到达学校,小刚从家到学校行驶路程s(单位:m)与时间r(单位:min)之间函数关系的大致图象是()ABCD6要使式子有意义,的取值范围是( )AB且C. 或D 且7有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:40m+10=43m1;40m+10=43m+1,其中正确的是()ABCD8如图,已知ABC,DCE,FEG,HG
3、I是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1连接AI,交FG于点Q,则QI=()A1BCD9下列各图中,既可经过平移,又可经过旋转,由图形得到图形的是()ABCD10如图,已知ABC,按以下步骤作图:分别以 B,C 为圆心,以大于BC 的长为半径作弧,两弧相交于两点 M,N;作直线 MN 交 AB 于点 D,连接 CD若 CD=AC,A=50,则ACB 的度数为( )A90B95C105D110二、填空题(本大题共6个小题,每小题3分,共18分)11如图,要使ABCACD,需补充的条件是_(只要写出一种)12如图,边长为6的菱形ABCD中,AC是其对角
4、线,B=60,点P在CD上,CP=2,点M在AD上,点N在AC上,则PMN的周长的最小值为_ 13在ABC中,若A,B满足|cosA|(sinB)20,则C_14如图,ABCADE,BAC=DAE=90,AB=6,AC=8,F为DE中点,若点D在直线BC上运动,连接CF,则在点D运动过程中,线段CF的最小值是_15如图,在菱形ABCD中,ABBD点E、F分别在AB、AD上,且AEDF连接BF与DE相交于点G,连接CG与BD相交于点H下列结论:AEDDFB;S四边形BCDGCG2;若AF2DF,则BG6GF其中正确的结论有_(填序号)16如图,等边三角形ABC内接于O,若O的半径为2,则图中阴影
5、部分的面积等于_三、解答题(共8题,共72分)17(8分)如图所示,在中,用尺规在边BC上求作一点P,使;(不写作法,保留作图痕迹)连接AP当为多少度时,AP平分18(8分)如图,在平面直角坐标系中,直线y=x+2与坐标轴交于A、B两点,点A在x轴上,点B在y轴上,C点的坐标为(1,0),抛物线y=ax2+bx+c经过点A、B、C(1)求该抛物线的解析式;(2)根据图象直接写出不等式ax2+(b1)x+c2的解集;(3)点P是抛物线上一动点,且在直线AB上方,过点P作AB的垂线段,垂足为Q点当PQ=时,求P点坐标19(8分)如图,已知AD是的中线,M是AD的中点,过A点作,CM的延长线与AE相
6、交于点E,与AB相交于点F.(1)求证:四边形是平行四边形;(2)如果,求证四边形是矩形.20(8分)如图,反比例函数y=(x0)的图象与一次函数y=2x的图象相交于点A,其横坐标为1(1)求k的值;(1)点B为此反比例函数图象上一点,其纵坐标为2过点B作CBOA,交x轴于点C,求点C的坐标21(8分)计算:(2)2+2018022(10分)如图,在平面直角坐标系中,二次函数yx2+bx+c的图象与坐标轴交于A,B,C三点,其中点B的坐标为(1,0),点C的坐标为(0,4);点D的坐标为(0,2),点P为二次函数图象上的动点(1)求二次函数的表达式;(2)当点P位于第二象限内二次函数的图象上时
7、,连接AD,AP,以AD,AP为邻边作平行四边形APED,设平行四边形APED的面积为S,求S的最大值;(3)在y轴上是否存在点F,使PDF与ADO互余?若存在,直接写出点P的横坐标;若不存在,请说明理由23(12分)已知关于x的一元二次方程有实数根(1)求k的取值范围;(2)若k为正整数,且方程有两个非零的整数根,求k的取值24为提高节水意识,小申随机统计了自己家7天的用水量,并分析了第3天的用水情况,将得到的数据进行整理后,绘制成如图所示的统计图(单位:升)(1)求这7天内小申家每天用水量的平均数和中位数;(2)求第3天小申家洗衣服的水占这一天总用水量的百分比;(3)请你根据统计图中的信息
8、,给小申家提出一条合理的节约用水建议,并估算采用你的建议后小申家一个月(按30天计算)的节约用水量参考答案一、选择题(共10小题,每小题3分,共30分)1、C【解析】观察可得,点P在线段AC上由A到C的运动中,线段PE逐渐变短,当EPAC时,PE最短,过垂直这个点后,PE又逐渐变长,当AP=m时,点P停止运动,符合图像的只有线段PE,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力用图象解决问题时,要理清图象的含义即会识图2、B【解析】根据幂的运算法则及整式的加减运
9、算即可判断.【详解】A. =x6,故错误;B. ,正确;C. =,故错误; D. 3+2 不能合并,故错误,故选B.【点睛】此题主要考查整式的加减及幂的运算,解题的关键是熟知其运算法则.3、B【解析】根据圆周角定理求出,根据三角形内角和定理计算即可【详解】解:由圆周角定理得,故选:B【点睛】本题考查的是三角形的外接圆与外心,掌握圆周角定理、等腰三角形的性质、三角形内角和定理是解题的关键4、A【解析】根据二次函数的性质、一次函数的性质及反比例函数的性质判断出函数符合y随x的增大而减小的选项【详解】解:A此函数为一次函数,y随x的增大而减小,正确;B此函数为二次函数,当x0时,y随x的增大而减小,
10、错误;C此函数为反比例函数,在每个象限,y随x的增大而减小,错误;D此函数为一次函数,y随x的增大而增大,错误故选A【点睛】本题考查了二次函数、一次函数、反比例函数的性质,掌握函数的增减性是解决问题的关键5、B【解析】【分析】根据小刚行驶的路程与时间的关系,确定出图象即可【详解】小刚从家到学校,先匀速步行到车站,因此S随时间t的增长而增长,等了几分钟后坐上了公交车,因此时间在增加,S不增长,坐上了公交车,公交车沿着公路匀速行驶一段时间后到达学校,因此S又随时间t的增长而增长,故选B【点睛】本题考查了函数的图象,认真分析,理解题意,确定出函数图象是解题的关键.6、D【解析】根据二次根式和分式有意
11、义的条件计算即可.【详解】解: 有意义,a+20且a0,解得a-2且a0.故本题答案为:D.【点睛】二次根式和分式有意义的条件是本题的考点,二次根式有意义的条件是被开方数大于等于0,分式有意义的条件是分母不为0.7、D【解析】试题分析:首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案解:根据总人数列方程,应是40m+10=43m+1,错误,正确;根据客车数列方程,应该为,错误,正确;所以正确的是故选D考点:由实际问题抽象出一元一次方程8、D【解析】解:ABC、DCE、FEG是三个全等的等腰三角形,HI=AB=2,GI=BC=1,BI=2BC=2,=,=
12、ABI=ABC,ABICBA,=AB=AC,AI=BI=2ACB=FGE,ACFG,=,QI=AI=故选D点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解ABCDEF,ACDEFG是解题的关键9、D【解析】A,B,C只能通过旋转得到,D既可经过平移,又可经过旋转得到,故选D.10、C【解析】根据等腰三角形的性质得到CDA=A=50,根据三角形内角和定理可得DCA=80,根据题目中作图步骤可知,MN垂直平分线段BC,根据线段垂直平分线定理可知BD=CD,根据等边对等角得到B=BCD,根据三角形外角性质可知B+BCD=CDA,进而求得BCD=25,根据图形可知ACB=ACD+B
13、CD,即可解决问题.【详解】CD=AC,A=50CDA=A=50CDA+A+DCA=180DCA=80根据作图步骤可知,MN垂直平分线段BCBD=CDB=BCDB+BCD=CDA2BCD=50BCD=25ACB=ACD+BCD=80+25=105故选C【点睛】本题考查了等腰三角形的性质、三角形内角和定理、线段垂直平分线定理以及三角形外角性质,熟练掌握各个性质定理是解题关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、ACD=B或ADC=ACB或AD:AC=AC:AB【解析】试题分析:DAC=CAB当ACD=B或ADC=ACB或AD:AC=AC:AB时,ABCACD故答案为ACD=
14、B或ADC=ACB或AD:AC=AC:AB考点:1相似三角形的判定;2开放型12、2【解析】过P作关于AC和AD的对称点,连接和,过P作, 和,M,N共线时最短,根据对称性得知PMN的周长的最小值为.因为四边形ABCD是菱形,AD是对角线,可以求得,根据特殊三角形函数值求得,再根据线段相加勾股定理即可求解.【详解】过P作关于AC和AD的对称点,连接和,过P作,四边形ABCD是菱形,AD是对角线,,又由题意得【点睛】本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.13、75【解析】【分析】根据绝对值及偶次方的非负性,可得出cosA及sinB的值,从而得出A及B的度数,利
15、用三角形的内角和定理可得出C的度数【详解】|cosA|(sinB)20,cosA=,sinB=,A=60,B=45,C=180-A-B=75,故答案为:75.【点睛】本题考查了特殊角的三角函数值及非负数的性质,解答本题的关键是得出cosA及sinB的值,另外要求我们熟练掌握一些特殊角的三角函数值14、1【解析】试题分析:当点A、点C和点F三点共线的时候,线段CF的长度最小,点F在AC的中点,则CF=115、【解析】(1)由已知条件易得A=BDF=60,结合BD=AB=AD,AE=DF,即可证得AEDDFB,从而说明结论正确;(2)由已知条件可证点B、C、D、G四点共圆,从而可得CDN=CBM,
16、如图,过点C作CMBF于点M,过点C作CNED于点N,结合CB=CD即可证得CBMCDN,由此可得S四边形BCDG=S四边形CMGN=2SCGN,在RtCGN中,由CGN=DBC=60,CNG=90可得GN=CG,CN=CG,由此即可求得SCGN=CG2,从而可得结论是正确的;(3)过点F作FKAB交DE于点K,由此可得DFKDAE,GFKGBE,结合AF=2DF和相似三角形的性质即可证得结论成立.【详解】(1)四边形ABCD是菱形,BD=AB,AB=BD=BC=DC=DA,ABD和CBD都是等边三角形,A=BDF=60,又AE=DF,AEDDFB,即结论正确;(2)AEDDFB,ABD和DB
17、C是等边三角形,ADE=DBF,DBC=CDB=BDA=60,GBC+CDG=DBF+DBC+CDB+GDB=DBC+CDB+GDB+ADE=DBC+CDB+BDA=180,点B、C、D、G四点共圆,CDN=CBM,如下图,过点C作CMBF于点M,过点C作CNED于点N,CDN=CBM=90,又CB=CD,CBMCDN,S四边形BCDG=S四边形CMGN=2SCGN,在RtCGN中,CGN=DBC=60,CNG=90GN=CG,CN=CG,SCGN=CG2,S四边形BCDG=2SCGN,=CG2,即结论是正确的; (3)如下图,过点F作FKAB交DE于点K,DFKDAE,GFKGBE,AF=2
18、DF,AB=AD,AE=DF,AF=2DF,BE=2AE,BG=6FG,即结论成立.综上所述,本题中正确的结论是:故答案为点睛:本题是一道涉及菱形、相似三角形、全等三角形和含30角的直角三角形等多种几何图形的判定与性质的题,题目难度较大,熟悉所涉及图形的性质和判定方法,作出如图所示的辅助线是正确解答本题的关键.16、 【解析】分析:题图中阴影部分为弓形与三角形的和,因此求出扇形AOC的面积即可,所以关键是求圆心角的度数.本题考查组合图形的求法.扇形面积公式等.详解:连结OC,ABC为正三角形,AOC=120, , 图中阴影部分的面积等于 S扇形AOC=即S阴影=cm2.故答案为.点睛:本题考查
19、了等边三角形性质,扇形的面积,三角形的面积等知识点的应用,关键是求出AOC的度数,主要考查学生综合运用定理进行推理和计算的能力.三、解答题(共8题,共72分)17、(1)详见解析;(2)30【解析】(1)根据线段垂直平分线的作法作出AB的垂直平分线即可;(2)连接PA,根据等腰三角形的性质可得,由角平分线的定义可得,根据直角三角形两锐角互余的性质即可得B的度数,可得答案【详解】(1)如图所示:分别以A、B为圆心,大于AB长为半径画弧,两弧相交于点E、F,作直线EF,交BC于点P,EF为AB的垂直平分线,PA=PB,点P即为所求(2)如图,连接AP,AP是角平分线,PAC+PAB+B=90,3B
20、=90,解得:B=30,当时,AP平分【点睛】本题考查尺规作图,考查了垂直平分线的性质、直角三角形两锐角互余的性质及等腰三角形的性质,线段垂直平分线上的点到线段两端的距离相等;熟练掌握垂直平分线的性质是解题关键18、(1)y=x2x+2;(2)2x0;(3)P点坐标为(1,2)【解析】分析:(1)、根据题意得出点A和点B的坐标,然后利用待定系数法求出二次函数的解析式;(2)、根据函数图像得出不等式的解集;(3)、作PEx轴于点E,交AB于点D,根据题意得出PDQ=ADE=45,PD=1,然后设点P(x,x2x+2),则点D(x,x+2),根据PD的长度得出x的值,从而得出点P的坐标详解:(1)
21、当y=0时,x+2=0,解得x=2,当x=0时,y=0+2=2,则点A(2,0),B(0,2),把A(2,0),C(1,0),B(0,2),分别代入y=ax2+bx+c得,解得该抛物线的解析式为y=x2x+2;(2)ax2+(b1)x+c2,ax2+bx+cx+2,则不等式ax2+(b1)x+c2的解集为2x0;(3)如图,作PEx轴于点E,交AB于点D,在RtOAB中,OA=OB=2,OAB=45,PDQ=ADE=45,在RtPDQ中,DPQ=PDQ=45,PQ=DQ=,PD=1,设点P(x,x2x+2),则点D(x,x+2),PD=x2x+2(x+2)=x22x,即x22x=1,解得x=1
22、,则x2x+2=2,P点坐标为(1,2)点睛:本题主要考查的是二次函数的性质以及直角三角形的性质,属于基础题型利用待定系数法求出函数解析式是解决这个问题的关键19、(1)见解析;(2)见解析.【解析】(1)先判定,可得,再根据是的中线,即可得到,依据,即可得出四边形是平行四边形;(2)先判定,即可得到,依据,可得根据是的中线,可得,进而得出四边形是矩形.【详解】证明:(1)是的中点,又,又是的中线,又,四边形是平行四边形;(2),即,又,又是的中线,又四边形是平行四边形,四边形是矩形.【点睛】本题主要考查了平行四边形、矩形的判定,等腰三角形的性质以及相似三角形的性质的运用,解题时注意:对角线相
23、等的平行四边形是矩形.20、(1)k=11;(1)C(2,0)【解析】试题分析:(1)首先求出点A的坐标为(1,6),把点A(1,6)代入y=即可求出k的值;(1)求出点B的坐标为B(4,2),设直线BC的解析式为y=2x+b,把点B(4,2)代入求出b=-9,得出直线BC的解析式为y=2x-9,求出当y=0时,x=2即可试题解析:(1)点A在直线y=2x上,其横坐标为1y=21=6,A(1,6), 把点A(1,6)代入,得,解得:k=11;(1)由(1)得:,点B为此反比例函数图象上一点,其纵坐标为2,解得x=4,B(4,2),CBOA,设直线BC的解析式为y=2x+b,把点B(4,2)代入
24、y=2x+b,得24+b=2,解得:b=9,直线BC的解析式为y=2x9,当y=0时,2x9=0,解得:x=2,C(2,0)21、1【解析】分析:首先计算乘方、零次幂和开平方,然后再计算加减即可详解:原式=4+1-6=-1点睛:此题主要考查了实数的运算,关键是掌握乘方的意义、零次幂计算公式和二次根式的性质22、 (1) yx23x+4;(2)当时,S有最大值;(3)点P的横坐标为2或1或或.【解析】(1)将代入,列方程组求出b、c的值即可;(2)连接PD,作轴交于点G,求出直线的解析式为,设,则,当时,S有最大值;(3)过点P作轴,设,则,根据,列出关于x的方程,解之即可【详解】解:(1)将、代入, ,二次函数的表达式;(2)连接,作轴交于点,如图所示在中,令y0,得,直线AD的解析式为设,则,当时,S有最大值(3)过点P作轴,设,则,即 ,当点P在y轴右侧时,或,(舍去)或(舍去),当点P在y轴左侧时,x0,或,(舍去),或(舍去), 综上所述,存在点F,使与互余点P的横坐标为或或或【点睛】本题是二次函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024-2030年化妆品用成膜剂行业市场现状供需分析及重点企业投资评估规划分析研究报告
- 2024-2030年功能性硅烷行业应用规模分析与发展前景趋势预测研究报告
- 2024-2030年刚玉微粉行业市场现状供需分析及投资评估规划分析研究报告
- 2024-2030年农产品行业风险投资发展分析及投融资与运作模式研究报告
- 2024-2030年再生钢产品入市调查研究报告
- 2024-2030年全球及中国阻燃聚酯短纤维行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024-2030年全球及中国金属检测机行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 2024-2030年全球及中国部署自动化行业市场现状供需分析及市场深度研究发展前景及规划可行性分析研究报告
- 项目部安全管理人员安全培训试题附解析答案可打印
- 红木家具买卖合同范文
- 通信连接器项目计划书(模板参考)
- 班主任讲座稿
- 英语高级听力 何其莘 听力原文
- 松木桩施工方案
- 小升初简历模板word免费下载
- 高压线路保护定值整定-文档资料
- 同舟共济活动规则
- 工艺美术史9明代
- ISO9001ISO14001ISO45001内审检查表
- 集体计件工资分配方案(案例)
- 预算表格(基站建设项目工程).doc
评论
0/150
提交评论