版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、计算几何中的二分思想8/19/20221引言二分思想,古已有之,邵子曰:“一分为二,二分为四,四分为八也。”正是根据这样的思想,我们的祖先创造了太极八卦。在当今的信息时代中,这一古老的智慧依旧闪耀着光芒,通过渗透到各门新兴学科中发扬光大,计算几何学就是其中之一。8/19/20222引言经典算法:分治法求凸包最近点对三角剖分空间分区二叉树etc 8/19/20223引言在近年来的各类信息学竞赛中,不断涌现了大批关于计算几何的试题,其中许多复杂的题目可以利用二分思想得到简单解决。掌握了这一思想,无疑是多了一把解决相关问题的利器。8/19/20224例题解析例一、Simplified GSM Net
2、work例二、Collecting Luggage例三、Heliport例四、Flight Safety8/19/20225例题解析例一、Simplified GSM Network例二、Collecting Luggage例三、Heliport例四、Flight Safety8/19/20226例一、Simplified GSM Network已知B(1B50)个信号站和C(1C50)座城市的坐标,坐标的绝对值不大于1000,每个城市使用最近的信号站。给定R(1R250)条连接城市线路的描述和Q(1Q10)个查询,求相应两城市间通信时最少需要转换信号站的次数。8/19/20227例一、Sim
3、plified GSM Network如右图所示,从城市1到城市6最少需要转换2+1+0=1+1+1+0=3次信号。8/19/20228例一分析最短路问题怎样计算边的权值?“每个城市使用最近的信号站”Voronoi图转换信号站穿过一条Voronoi边边权两点连线段穿过Voronoi边的次数8/19/20229例一分析解法一通过以上的分析,不难得出以下算法:求Voronoi图;求最短路。思维清晰、时间效率高代码量大、不易编程和调试杀鸡焉用牛刀!能不能不求Voronoi图?8/19/202210例一分析解法二二分!l的两端点所属信 号站相同:wl=0。否则若|l|e(蓝):wl=1。否则,将线段l
4、沿中点(红)分开: l=l1+l2,wl=wl1+wl2。对l1与l2进行同样操作。8/19/202211例一分析解法二对于每条边,通过上述方法,可以不用作Voronoi图,求出各边权值。再套用最短路算法,问题即可解决。8/19/202212例一小结Voronoi图经典模型方便思考陷入固有的思维定势,难以自拔二分思想线段一分为二化繁为简,易于编程避开求作Voronoi图的套路8/19/202213例三、Heliport已知一个只由水平边和垂直边构成的(简单)N(1N20)边形屋顶,每边长为不超过50的正整数,要在上面修建一个圆形直升机场,求最大半径(图中为10)。8/19/202214例三分析
5、解法一最大内切圆最优解必定贴住三个顶点或边d1=d2=d3,两个方程,两个未知数(x,y),分别求解。di为圆心到点(记作P)、水平边(记作H)或垂直边的距离(记作V) 。8/19/202215例三分析解法一共十种组合: PPP、PPH、PPV、PHH、PVV、PHV、HHV、HVV、HHH、VVV。HHH与VVV不成立,故有八种。列出八种方程,解出圆心坐标和半径。思维复杂度低计算复杂、容易出错、情况繁多8/19/202216例三分析解法一8/19/202217例三分析解法二还能减少一些情况吗?d1=d2=d3=r d1=d2=r半径未知,两个方程,三个未知数。方程类型:八种 四种 ( PP、
6、PH、PV、HV)8/19/202218例三分析解法二r从哪里来?二分!算法:二分半径,代入每种情况的方程求解圆心坐标,判断是否存在解,调整直到满足精度要求。8/19/202219例三小结计算几何细节“差之毫厘,失之千里”二分思想,化零为整简化计算,降低思维复杂度和编程复杂度8/19/202220总结计算几何学博大精深,相关的题目可谓是千变万化,解法也无定势可言,一些经典问题稍加修改之后,用传统方式解题可能就毫无优势可言。这要求我们必须跳出思维定势,采用全新的思想,二分思想就是其中不可或缺的一员。8/19/202221总结通过对以上几个例题的分析,我们对二分思想在计算几何中的应用又有了新的认识
7、。具备了这一思想,可以使题目化繁为简、化动为静、化零为整、化求为证,用简单方法解答题目,减省了纷繁的细节处理和约束关系,简洁高效地得到令人满意的结果。可以说,二分带给我们一种全新的思路,是成功解决计算几何问题的一把利器。8/19/202222谢谢大家8/19/202223八种方程的解8/19/202224八种方程的解8/19/202225八种方程的解8/19/202226八种方程的解8/19/202227四种方程的解8/19/202228更多例子ACM/ICPC Asia Regional (Tokyo), 1998 Problem F: Triangle PartitionCEOI 2002 A highway and the seven dwarfsACM/ICPC World Fin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 23356-2024卷烟烟气气相中一氧化碳的测定非散射红外法
- 小学数学计算教学的实践与反思
- 城乡给排水工程建设安全生产责任保险事故预防服务指南征
- 《安全检测技术》练习题集
- 质量工程师理论知识题库及答案(1-342道)
- 【初中物理】2024-2025学年苏科版物理八年级上学期知识清单
- 新疆镀锌厂钢材热镀锌项目环境影响报告书
- 深圳-PEP-2024年10版小学4年级下册英语第4单元寒假试卷
- 2024年01版小学四年级英语第5单元期末试卷
- 小企业会计准则建筑业的账务处理-记账实操
- GB 30603-2014食品安全国家标准食品添加剂乙酸钠
- 2023届台州一模考试试卷
- 大学物理 电阻电路等效变换
- 国企职务犯罪预防课件
- 介入手术跟台课件
- 医学高级职称评审答辩报告PPT模板
- 《王戎不取道旁李》课堂作业设计
- 签收回执表(最新版)
- 中国气血健康白皮书
- 统编版语文5年级(上)期中单元复习课件
- 驾校大学招生策划书
评论
0/150
提交评论