版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1下列各式:3+3=6;=1;+=2;=2;其中错误的有( )A3个B2个C1个D0个2已知:如图四边形OACB是菱形,OB在X轴的正半轴上,sinAOB=1213反比例函数y=kx在第一象限图象经过点A,与BC交于
2、点FSAOF=392,则k=()A15B13C12D53如图,A、B、C是O上的三点,BAC30,则BOC的大小是()A30B60C90D454二次函数的图象如图所示,则下列各式中错误的是( )Aabc0Ba+b+c0Ca+cbD2a+b=05气象台预报“本市明天下雨的概率是85%”,对此信息,下列说法正确的是()A本市明天将有的地区下雨B本市明天将有的时间下雨C本市明天下雨的可能性比较大D本市明天肯定下雨6将一把直尺与一块直角三角板如图放置,如果,那么的度数为( ).ABCD7一次数学测试后,随机抽取九年级某班5名学生的成绩如下:91,78,1,85,1关于这组数据说法错误的是()A极差是2
3、0B中位数是91C众数是1D平均数是918如图,在中,点D为AC边上一点,则CD的长为( )A1BC2D9如图,是由几个相同的小正方形搭成几何体的左视图,这几个几何体的摆搭方式可能是( )ABCD10如图,将矩形ABCD沿EM折叠,使顶点B恰好落在CD边的中点N上若AB=6,AD=9,则五边形ABMND的周长为()A28B26C25D22二、填空题(共7小题,每小题3分,满分21分)11如图,在RtABC中,ABAC,D、E是斜边BC上的两点,且DAE45,将ADC绕点A顺时针旋转90后,得到AFB,连接EF,下列结论:EAF45;AEDAEF;ABEACD;BE1+DC1DE1其中正确的是_
4、(填序号)12如图,在梯形中,点、分别是边、的中点设,那么向量用向量表示是_13如图,在O中,点B为半径OA上一点,且OA13,AB1,若CD是一条过点B的动弦,则弦CD的最小值为_14分解因式8x2y2y_15下图是在正方形网格中按规律填成的阴影,根据此规律,则第n个图中阴影部分小正方形的个数是 16一个等腰三角形的两边长分别为4cm和9cm,则它的周长为_cm17如图是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM4米,AB8米,MAD45,MBC30,则警示牌的高CD为米.(结果精确到0.1米,参考数据:21.41,31.73)三、解答题(共7小题,满分69分)18(10
5、分)如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中C=90,B=E=30. 操作发现如图1,固定ABC,使DEC绕点C旋转当点D恰好落在BC边上时,填空:线段DE与AC的位置关系是 ;设BDC的面积为S1,AEC的面积为S1则S1与S1的数量关系是 猜想论证当DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S1的数量关系仍然成立,并尝试分别作出了BDC和AEC中BC,CE边上的高,请你证明小明的猜想拓展探究已知ABC=60,点D是其角平分线上一点,BD=CD=4,OEAB交BC于点E(如图4),若在射线BA上存在点F,使SDCF=SBDC,请直接写出相应的BF的长19
6、(5分)如图,已知在RtABC中,ACB=90,ACBC,CD是RtABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F求证:DF是BF和CF的比例中项;在AB上取一点G,如果AEAC=AGAD,求证:EGCF=EDDF20(8分)如图,直角坐标系中,直线与反比例函数的图象交于A,B两点,已知A点的纵坐标是2.(1)求反比例函数的解析式.(2)将直线沿x轴向右平移6个单位后,与反比例函数在第二象限内交于点C.动点P在y轴正半轴上运动,当线段PA与线段PC之差达到最大时,求点P的坐标.21(10分)已知反比例函数的图象经过三个点A(4,3),B(2m,y1),C(6m,y2),其中m
7、1(1)当y1y2=4时,求m的值;(2)如图,过点B、C分别作x轴、y轴的垂线,两垂线相交于点D,点P在x轴上,若三角形PBD的面积是8,请写出点P坐标(不需要写解答过程)22(10分)某中学开展了“手机伴我健康行”主题活动,他们随机抽取部分学生进行“使用手机目的”和“每周使用手机的时间”的问卷调查,并绘制成如图,所示的统计图,已知“查资料”的人数是40人请你根据图中信息解答下列问题:(1)在扇形统计图中,“玩游戏”对应的圆心角度数是_;(2)补全条形统计图;(3)该校共有学生1200人,试估计每周使用手机时间在2小时以上(不含2小时)的人数.23(12分)为了解某校落实新课改精神的情况,现
8、以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为 (2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为 .(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E表示)和3位女生(分别用F,G,H表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.24(14分)某养鸡场有2500只鸡准备对外出售.从中随机抽取了一部分鸡,根据它们的质量(单位:),绘
9、制出如下的统计图和图.请根据相关信息,解答下列问题:()图中的值为 ;()求统计的这组数据的平均数、众数和中位数;() 根据样本数据,估计这2500只鸡中,质量为的约有多少只?参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】3+3=6,错误,无法计算; =1,错误;+=2不能计算;=2,正确.故选A.2、A【解析】过点A作AMx轴于点M,设OA=a,通过解直角三角形找出点A的坐标,再根据四边形OACB是菱形、点F在边BC上,即可得出SAOF=S菱形OBCA,结合菱形的面积公式即可得出a的值,进而依据点A的坐标得到k的值【详解】过点A作AMx轴于点M,如图所示设
10、OA=a=OB,则,在RtOAM中,AMO=90,OA=a,sinAOB=1213,AM=OAsinAOB=1213a,OM=513a,点A的坐标为(513a,1213a)四边形OACB是菱形,SAOF=392,12OBAM=392,即12a1213a=39,解得a=132,而a0,a=132,即A(52,6),点A在反比例函数y=kx的图象上,k=526=1故选A【解答】解:【点评】本题考查了菱形的性质、解直角三角形以及反比例函数图象上点的坐标特征,解题的关键是利用SAOF=12S菱形OBCA3、B【解析】【分析】欲求BOC,又已知一圆周角BAC,可利用圆周角与圆心角的关系求解【详解】BAC
11、=30,BOC=2BAC =60(同弧所对的圆周角是圆心角的一半),故选B【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半4、B【解析】根据二次函数的图象与性质逐一判断即可【详解】解:由图象可知抛物线开口向上,对称轴为,故D正确,又抛物线与y轴交于y轴的负半轴,故A正确;当x=1时,即,故B错误;当x=-1时,即,故C正确,故答案为:B【点睛】本题考查了二次函数图象与系数之间的关系,解题的关键是熟练掌握二次函数各系数的意义以及二次函数的图象与性质5、C【解析】试题解析:根据概率表示某事情发生的可能性的大小,分析可得:A、明天降水的可能性为
12、85%,并不是有85%的地区降水,错误; B、本市明天将有85%的时间降水,错误; C、明天降水的可能性为90%,说明明天降水的可能性比较大,正确; D、明天肯定下雨,错误 故选C考点:概率的意义6、D【解析】根据三角形的一个外角等于与它不相邻的两个内角的和求出1,再根据两直线平行,同位角相等可得2=1【详解】如图,由三角形的外角性质得:1=90+1=90+58=148直尺的两边互相平行,2=1=148故选D【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键7、D【解析】试题分析:因为极差为:178=20,所以A选项正确;从小到大排列为:7
13、8,85,91,1,1,中位数为91,所以B选项正确;因为1出现了两次,最多,所以众数是1,所以C选项正确;因为,所以D选项错误.故选D考点:众数中位数平均数极差.8、C【解析】根据DBC=A,C=C,判定BCDACB,根据相似三角形对应边的比相等得到代入求值即可.【详解】DBC=A,C=C,BCDACB, CD=2.故选:C.【点睛】主要考查相似三角形的判定与性质,掌握相似三角形的判定定理是解题的关键.9、A【解析】根据左视图的概念得出各选项几何体的左视图即可判断【详解】解:A选项几何体的左视图为;B选项几何体的左视图为;C选项几何体的左视图为;D选项几何体的左视图为;故选:A【点睛】本题考
14、查由三视图判断几何体,解题的关键是熟练掌握左视图的概念10、A【解析】如图,运用矩形的性质首先证明CN=3,C=90;运用翻折变换的性质证明BM=MN(设为),运用勾股定理列出关于的方程,求出,即可解决问题【详解】如图,由题意得:BM=MN(设为),CN=DN=3;四边形ABCD为矩形,BC=AD=9,C=90,MC=9-;由勾股定理得:2=(9-)2+32,解得:=5,五边形ABMND的周长=6+5+5+3+9=28,故选A【点睛】该题主要考查了翻折变换的性质、矩形的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、矩形的性质、勾股定理等几何知识点来分析、判断、推理
15、或解答二、填空题(共7小题,每小题3分,满分21分)11、【解析】根据旋转得到,对应角CADBAF,由EAFBAF+BAECAD+BAE即可判断由旋转得出AD=AF, DAEEAF,及公共边即可证明在ABEACD中,只有ABAC、ABEACD45两个条件,无法证明先由ACDABF,得出ACDABF45,进而得出EBF=90,然后在RtBEF中,运用勾股定理得出BE1+BF1=EF1,等量代换后判定正确【详解】由旋转,可知:CADBAFBAC90,DAE45,CAD+BAE45,BAF+BAEEAF45,结论正确;由旋转,可知:ADAF在AED和AEF中,AEDAEF(SAS),结论正确;在AB
16、EACD中,只有ABAC,、ABEACD45两个条件,无法证出ABEACD,结论错误;由旋转,可知:CDBF,ACDABF45,EBFABE+ABF90,BF1+BE1EF1AEDAEF,EFDE,又CDBF,BE1+DC1DE1,结论正确故答案为:【点睛】本题考查了相似三角形的判定,全等三角形的判定与性质, 勾股定理,熟练掌握定理是解题的关键12、【解析】分析:根据梯形的中位线等于上底与下底和的一半表示出EF,然后根据向量的三角形法则解答即可详解:点E、F分别是边AB、CD的中点,EF是梯形ABCD的中位线,FC=DC,EF=(AD+BC)BC=3AD,EF=(AD+3AD)=2AD,由三角
17、形法则得,=+=2+=2+ 故答案为:2+点睛:本题考查了平面向量,平面向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键,本题还考查了梯形的中位线等于上底与下底和的一半13、10【解析】连接OC,当CDOA时CD的值最小,然后根据垂径定理和勾股定理求解即可.【详解】连接OC,当CDOA时CD的值最小,OA=13,AB=1,OB=13-1=12,BC=,CD=52=10.故答案为10.【点睛】本题考查了垂径定理及勾股定理,垂径定理是:垂直与弦的直径平分这条弦,并且平分这条弦所对的两段弧.14、2y(2x+1)(2x1)【解析】首先提取公因式2y,再利用平方差公式分解因式得出答案【详解】
18、8x2y-2y=2y(4x2-1)=2y(2x+1)(2x-1)故答案为2y(2x+1)(2x-1)【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键15、n1n1【解析】试题解析:仔细观察图形知道:每一个阴影部分由左边的正方形和右边的矩形构成,分别为:第一个图有:1+1+1个,第二个图有:4+1+1个,第三个图有:9+3+1个,第n个为n1+n+1.考点:规律型:图形的变化类16、1【解析】底边可能是4,也可能是9,分类讨论,去掉不合条件的,然后可求周长.【详解】试题解析:当腰是4cm,底边是9cm时:不满足三角形的三边关系,因此舍去当底边是4cm,腰长是9cm时,
19、能构成三角形,则其周长=4+9+9=1cm故填1【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答.17、2.9【解析】试题分析:在RtAMD中,MAD=45,AM=4米,可得MD=4米;在RtBMC中,BM=AM+AB=12米,MBC=30,可求得MC=4米,所以警示牌的高CD=4-4=2.9米.考点:解直角三角形.三、解答题(共7小题,满分69分)18、解:(1)DEAC(1)仍然成立,证明见解析;(3)3或2【解析】(1)由旋转可知:AC=DC,C=90,B=DCE=30,DAC=CD
20、E=20ADC是等边三角形DCA=20DCA=CDE=20DEAC过D作DNAC交AC于点N,过E作EMAC交AC延长线于M,过C作CFAB交AB于点F 由可知:ADC是等边三角形, DEAC,DN=CF,DN=EMCF=EMC=90,B =30AB=1AC又AD=ACBD=AC(1)如图,过点D作DMBC于M,过点A作ANCE交EC的延长线于N,DEC是由ABC绕点C旋转得到,BC=CE,AC=CD,ACN+BCN=90,DCM+BCN=180-90=90,ACN=DCM,在ACN和DCM中, ,ACNDCM(AAS),AN=DM,BDC的面积和AEC的面积相等(等底等高的三角形的面积相等)
21、,即S1=S1; (3)如图,过点D作DF1BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时SDCF1=SBDE;过点D作DF1BD,ABC=20,F1DBE,F1F1D=ABC=20,BF1=DF1,F1BD=ABC=30,F1DB=90,F1DF1=ABC=20,DF1F1是等边三角形,DF1=DF1,过点D作DGBC于G,BD=CD,ABC=20,点D是角平分线上一点,DBC=DCB=20=30,BG=BC=,BD=3CDF1=180-BCD=180-30=150,CDF1=320-150-20=150,CDF1=CDF1,在CDF1和CDF1中,CDF
22、1CDF1(SAS),点F1也是所求的点,ABC=20,点D是角平分线上一点,DEAB,DBC=BDE=ABD=20=30,又BD=3,BE=3cos30=3,BF1=3,BF1=BF1+F1F1=3+3=2,故BF的长为3或219、证明见解析【解析】试题分析:(1)根据已知求得BDF=BCD,再根据BFD=DFC,证明BFDDFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明AEGADC,得到AEG=ADC=90,从而得EGBC,继而得 ,由(1)可得 ,从而得 ,问题得证.试题解析:(1)ACB=90,BCD+ACD=90,CD是RtABC的高,ADC=BDC=90,A+A
23、CD=90,A=BCD,E是AC的中点,DE=AE=CE,A=EDA,ACD=EDC,EDC+BDF=180-BDC=90,BDF=BCD,又BFD=DFC,BFDDFC,BF:DF=DF:FC,DF2=BFCF;(2)AEAC=EDDF, ,又A=A,AEGADC,AEG=ADC=90,EGBC, ,由(1)知DFDDFC, , ,EGCF=EDDF.20、(1);(2)P(0,6)【解析】试题分析:(1)先求得点A的坐标,再利用待定系数法求得反比例函数的解析式即可;(2)连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PCAC;当A、C、P不共线时,PA-PC=AC;
24、因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值.先求得平移后直线的解析式,再求得平移后直线与反比例函数的图象的交点坐标,最后求直线AC的解析式,即可求得点P的坐标.试题解析:令一次函数中,则, 解得:,即点A的坐标为(-4,2) 点A(-4,2)在反比例函数的图象上,k=-42=-8, 反比例函数的表达式为 连接AC,根据三角形两边之差小于第三边知:当A、C、P不共线时,PA-PCAC;当A、C、P不共线时,PA-PC=AC;因此,当点P在直线AC与y轴的交点时,PA-PC取得最大值. 设平移后直线于x轴交于点F,则F(6,0)设平移后的直线解析式为,将F(6,0)代入得:b=3直
25、线CF解析式: 令3=,解得:, C(-2,4) A、C两点坐标分别为A(-4,2)、C(-2,4)直线AC的表达式为, 此时,P点坐标为P(0,6).点睛:本题是一次函数与反比例函数的综合题,主要考查了用待定系数法求函数的解析式、一次函数与反比例函数的交点坐标,熟练运用一次函数及反比例函数的性质是解题的关键.21、(1)m=1;(2)点P坐标为(2m,1)或(6m,1)【解析】(1)先根据反比例函数的图象经过点A(4,3),利用待定系数法求出反比例函数的解析式为y=12x,再由反比例函数图象上点的坐标特征得出y1=122m=6m,y2=126m=2m,然后根据y1y2=4列出方程6m2m=4
26、,解方程即可求出m的值;(2)设BD与x轴交于点E根据三角形PBD的面积是8列出方程124mPE=8,求出PE=4m,再由E(2m,1),点P在x轴上,即可求出点P的坐标【详解】解:(1)设反比例函数的解析式为y=kx,反比例函数的图象经过点A(4,3),k=4(3)=12,反比例函数的解析式为y=12x,反比例函数的图象经过点B(2m,y1),C(6m,y2),y1=122m=6m,y2=126m=2m,y1y2=4,6m2m=4,m=1,经检验,m=1是原方程的解,故m的值是1;(2)设BD与x轴交于点E,点B(2m,6m),C(6m,2m),过点B、C分别作x轴、y轴的垂线,两垂线相交于
27、点D,D(2m,2m),BD=6m2m=4m,三角形PBD的面积是8,12BDPE=8,124mPE=8,PE=4m,E(2m,1),点P在x轴上,点P坐标为(2m,1)或(6m,1)【点睛】本题考查了待定系数法求反比例函数的解析式,反比例函数图象上点的坐标特征以及三角形的面积,正确求出双曲线的解析式是解题的关键22、(1)126;(2)作图见解析(3)768【解析】试题分析:(1)根据扇形统计图求出所占的百分比,然后乘以360即可;(2)利用“查资料”人人数是40人,查资料”人占总人数40%,求出总人数100,再求出32人 ;(3)用部分估计整体.试题解析:(1)126 (2)4040%216183232人 (3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度摄影师与摄影棚运营方居间合同2篇
- 二零二五版社区配送订餐服务合同范本与社区管理协议3篇
- 二零二五年度酒店地毯绿色生产与环保认证合同3篇
- 二零二五年新能源充电桩建设运营合同样本3篇
- 二零二五版高端住宅项目全程代理销售合同3篇
- 二零二五版基因合成与生物技术知识产权转让合同3篇
- 二零二五版10月大型设备运输委托合同2篇
- 二零二五版广西事业单位聘用示范性合同模板12篇
- 2025年度出口货物环保认证服务合同3篇
- 二零二五年度腻子材料国际贸易代理合同2篇
- 常见老年慢性病防治与护理课件整理
- 履约情况证明(共6篇)
- 云南省迪庆藏族自治州各县区乡镇行政村村庄村名居民村民委员会明细
- 设备机房出入登记表
- 六年级语文-文言文阅读训练题50篇-含答案
- 医用冰箱温度登记表
- 零售学(第二版)第01章零售导论
- 大学植物生理学经典05植物光合作用
- 口袋妖怪白金光图文攻略2周目
- 光伏发电站集中监控系统通信及数据标准
- 三年级下册生字组词(带拼音)
评论
0/150
提交评论