




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、附件A、三极管的Pspice模型参数.Model NPN(PNP、LPNP) model parameters模型参数含义单 位默认值备注AFflicker noise exponent1.0噪声指数BFideal maximum forward beta100.0最大正向放大倍数BRideal maximum reverse beta1.0最大反向放大倍数CJCbase-collector zero-bias p-n capacitancefarad0.0集电结电容CJEbase-emitter zero-bias p-n capacitancefarad0.0发射结电容CJS (CCS)S
2、ubstrate zero-bias p-n capacitancefarad0.0零偏集电极-衬底电容EGbandgap voltage (barrier height)eV1.11FCforward-bias depletion capacitor coefficient0.5GAMMAepitaxial region doping factor1E-11IKF (IK)corner for forward-beta high-current roll-offampinfiniteIKRcorner for reverse-beta high-current roll-offampinfi
3、niteIRBcurrent at which Rb falls halfway toampinfiniteIStransport saturation currentamp1E-16饱和电流ISC (C4)base-collector leakage saturation currentamp0.0集电结漏电流ISE (C2)base-emitter leakage saturation currentamp0.0发射结漏电流ISSsubstrate p-n saturation currentamp0.0ITFtransit time dependency on Icamp0.0KFfli
4、cker noise coefficient0.0噪声系数MJC (MC)base-collector p-n grading factor0.33MJE (ME)base-emitter p-n grading factor0.33MJS (MS)substrate p-n grading factor0.0NCbase-collector leakage emission coefficient2.0集电结漏电系数NEbase-emitter leakage emission coefficient1.5发射结漏电系数NFforward current emission coefficie
5、nt1.0正向电流系数NKhigh-current roll-off coefficient0.5NRreverse current emission coefficient1.0NSsubstrate p-n emission coefficient1.0PTFexcess phase 1/(2 , TF)Hzdegree0.0QCOepitaxial region charge factorcoulomb0.0RBzero-bias (maximum) base resistanceohm0.0最大基极电阻RBMminimum base resistanceohmRB最小基极电阻RCcol
6、lector ohmic resistanceohm0.0RCOepitaxial region resistanceohm0.0REemitter ohmic resistanceohm0.0TFideal forward transit timesec0.0正向传递时间TRideal reverse transit timesec0.0反向传递时间TRB1RB temperature coefficient (linear)0C -10.0RB的温度系数TRB2RB temperature coefficient (quadratic)0C -20.0TRC1RC temperature
7、coefficient (linear)0C -10.0TRC2RC temperature coefficient (quadratic)0C -20.0TRE1RE temperature coefficient (linear)0C -10.0TRE2RE temperature coefficient (quadratic)0C -20.0TRM1RBM temperature coefficient (linear)0C -10.0TRM2RBM temperature coefficient (quadratic)0C -20.0T_ABSabsolute temperature0
8、CT MEASUREDmeasured temperature0CT_REL_GLOBALrelative to current temperature0CT_REL_LOCALrelative to AKO model temperature0CVAF (VA)forward Early voltagevoltinfiniteVAR (VB)reverse Early voltagevoltinfiniteVJC (PC)base-collector built-in potentialvolt0.75VJE (PE)base-emitter built-in potentialvolt0.
9、75VJS (PS)substrate p-n built-in potentialvolt0.75VOcarrier mobility knee voltagevolt10.0VTFtransit time dependency on VbcvoltinfiniteXCJCfraction of CJC connected internally to Rb1.0XCJC2fraction of CJC connected internally to Rb1.0XTBforward and reverse beta temperature coefficient0.0正向和反向放大倍数的温度影
10、响系数XTFtransit time bias dependence coefficient0.0传递时间系数XTI (PT)IS temperature effect exponent3.0IS的温度影响系数附件 B、PSpice Goal Function特征函数功能说明Bandwidth (1, db_level)计算波形1从最大值下降db_level db的波形宽度。BPBW (1, db_level)Same as Bandwidth (1, db_level)CenterFreq (1, db_level)计算波形1从最大值下降db_level db的两点的中心频率。Falltim
11、e (1)计算波形1的下降时间。Gain Margin (1,2)计算波形1的相位为-180。时,波形2的分贝值。GenFall (1)类似于Falltime (1),但它的下降时间相对的y轴是起点于终点,而不是最大值与最小值。GenRise (1)与GenFall (1)类似,只是它是上升时间。HPBW (1, db_level)查找第一次比最大值低db_level db的x坐标。(上升沿)LPBW (1, db_level)与HPBW类似,只是用于下降沿。Maxr (1, begin-x, end-x)查找区间的最大值。Overshoot (1)计算最大值与终点之间y轴坐标差与终点值的百分
12、比。Peak (1, n_occur)查找第n-occur个峰值点的Y值Period (1)计算波形1的周期。Phase Margin (1,2)查找波形1在0分贝时波形2的相位。Pulsewidth (1)计算波形1的脉冲宽度。Risetime (1)计算波形1的上升时间。Swingr (1, begin-x, end-x)计算在指定范围内,波形1的最大值与最小值之差。TPmW2 (1, Period)XatNthy (1, Y-value, n-occur)查找波形1上第n-occur个Y-value值时的X坐标值。XatNthYn(1,Y_value,n_occur)与XatNthy类似
13、,但它查找的Y值必须在下降沿上。XatNthYp(1,Y_value,n_occur)与XatNthy类似,但它查找的Y值必须在上升沿上。XatNthYpct(1,Y_PCT,n_occur)查找第n-occur个Y轴值为Y轴范围的Y_pct%时的X轴值。YatX(1,X_value)查找X-value值处的Y值。YatXpct(1,X_pct)查找X轴值为X轴范围的X_pct%时的Y轴值。附件 C Modeling voltage-controlled and temperature-dependent resistorsAnalog Behavioral Modeling (ABM) ca
14、n be used to model a nonlinear resistor through use 撒 Ohm and tables and expressions which describe resistance. Here are some examples.Voltage-controlled resistorIf a Resistance vs. Voltage curve is available, a look-up table can be used in the ABM expression. This table contains (Voltage, Resistanc
15、e) pairs picked from points on the curve. The voltage input is nonlinearly mapped from the voltage values in the table to the resistance values. Linear interpolation is used between table values.Let 担 say that points picked from a Resistance vs. Voltage curve are:VoltageResistance0.5251.0502.0100The
16、 ABM expression for this is shown in Figure 1.G1脂5 G VALUEV(%IN+, %IN-)/TABLE(V(%IN+, %IN-), 0.5,25, 1.0,50,2.0,100 )Figure 1 - Voltage controlled resistor using look-up tableTemperature-dependent resistorA temperature-dependent resistor (or thermistor) can be modeled with a look-up table, or an exp
17、ression can be used to describe how the resistance varies with temperature. The denominator in the expression in Figure 2 is used to describe common thermistors. The TEMP variable in the expression is the simulation temperature, in Celsius. This is then converted to Kelvin by adding 273.15. This ste
18、p is necessary to avoid a divide by zero problem in the denominator, when T=0 C.NOTE: TEMP can only be used in ABM expressions (E, G devices).Figure 3 shows the results ofa DC sweep of temperature from -40 to 60 C.The y-axis shows the resistance orV(I1:-)/1A.8 OKU IN+OU i IN- OUFigure 3 - PSpice plo
19、t of Resistance vs. Temperature (current=1A)GmWLUEFigure 2 - Temperature controlled resistorVariable Q RLC networkIn most circuits the value of a resistor is fixed during a simulation. While the value can be made to change for a set of simulations by using a Parametric Sweep to move through a fixed
20、sequence of values, a voltage-controlled resistor can be made to change dynamically during a simulation. This is illustrated by the circuit shown in Figure 5, which employs a voltage-controlled resistor.This circuit employs an external reference component that is sensed. The output impedance equals
21、the value of the control voltage times the reference. Here, we will use Rref, a 50 ohm resistor as our reference. As a result, the output impedance is seen by the circuit as a floating resistor equal to the value of V(Control) times the resistance value of Rref. In our circuit, the control voltage v
22、alue is stepped from 0.5 volt to 2 volts in 0.5 volt steps, therefore, the resistance between nodes 3 and 0 varies from 25 ohms to 100 ohms in 25 ohm-steps.Hu2TRAN = PULSBTOV, 1V, D.5ms. 1us, 1us, 0.5ms, 4ms)Figure 5 - Variable Q RLC circuit-1.0U0U-PARAMETERS:Rref = 50051.0IDS2. Bus o 7 a U(C1:2,G1:
23、IN+)TimeFigure 6 - Output waveforms of variable Q RLC circuitA transient analysis of this circuit using a 0.5 ms wide pulse will show how the ringing differs as the Q is varied.Using Probe, we can observe how the ringing varies as the resistance changesFigure 6 shows the input pulse and the voltage
24、across the capacitor C1. Comparing the four output waveforms, we can see the most pronounced ringing occurs when the resistor has the lowest value and the Q is greatest. Any signal source can be used to drive the voltage-controlled resistance. If we had used a sinusoidal control sourceinstead of a s
25、taircase, the resistance would have varied dynamically during the simulation.附件D变压器PSpice模型等效电路变压器模型*Transformer Subcircuit Parameters *RP = Primary DC resistance *LEAK = Leakage inductance*Generic Transformer*Connections: * Pri+*9 0V2 VISRC RATIO8 9 5 2 RATIO1 7 RP8 3 RS*RATIO = Turns ratio= Second
26、ary/Primary*RS = Secondary DC resistance*MAG = Magnetizing inductance*dw: 2-8-99 corrected VISRC polarity and FCTRL configuration| Pri-*| | Sec+*| | | Sec- *,SUBCKT TRANS 1 2 3 4 PARAMS: RATIO=1 RP=0”.1 RS=0”.1 LEAK=1u MAG=1k”VISRCFCTRLEVCVSRPRIRSECLLEAK 7 5 LEAKLMAGNET 2 5 MAG .ENDS TRANS等价于用K_Line
27、把两个电感关联起来.CT中心抽头输出变压器模型*TRANSCT:Transformer Subcircuit Parameters *RATIO = Turns ratio (= Secondary/Primary)*RP = Primary DC resistance*RS = Secondary DC resistance*LEAK = Leakage inductance*MAG = Magnetizing inductance*5:1 Centre-Tapped TransformerConnections:* Pri+ *| Pri- *| | Sec+ *| | | SecCT *
28、| | | | Sec- *| | | | |,SUBCKT 5TO1CT 1 2 3 4 5 PARAMS: RATIO=0”.2 RP=0”.1 RS=0”.1 LEAK=1u MAG=1u” RPRI 1 7RPLLEAK 7 10 LEAKLMAGNET 6 10 MAGVSEC1 9 4 DC 0VFSEC1 6 2 VSEC1 (RATIO/2)ESEC1 8 9 10 2 (RATIO/2)RSEC1 8 3 (RS/2)VSEC2 12 5 DC 0VFSEC2 6 2 VSEC2 (RATIO/2)ESEC2 11 12 10 2 (RATIO/2)RSEC2 11 4 (RS/2).ENDS 5TO1CTTransformer变压器相关参数:Primary turns 一次线匝Secondary turns 二次线匝Primary (Winding) resistan
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 地暖太阳能工程施工方案
- 管道跨越施工方案
- 医疗机构水污染物排放的法律责任与监管措施
- 【专精特新】印制电路板行业市场份额证明材料(智研咨询发布)
- 食品加工企业食品安全事件应急预案
- 基于大观念的高中英语单元整体教学设计探究
- 湖北省2024-2025学年高二上学期1月期末物理试题(原卷版)
- 四川罗渡中学20172018人教地理必修二综合训练(四)及解析
- 北京市房山区2024-2025学年高三上学期期末学业水平调研(二)物理试卷2
- 安徽省亳州市2024-2025学年高二上学期期末考试地理试卷
- 220kV输电线路工程质量通病防治措施
- 【EHS流程图】建设项目职业卫生“三同时”工作流程图(9页)
- 迈达斯建模(贝雷梁、钢栈桥)
- [考研英语]商志英语作文模板
- Fluent出入口边界条件设置及实例解析
- 模拟追溯演练报告(成品到原料)
- 常用一线降压药一览表
- IATF16949-2016内部审核方案
- 权威实验室CMA资质认定程序文件模板
- 平面机构简图及自由分解PPT课件
- 工业园区提升改造项目可行性研究报告模板
评论
0/150
提交评论