机械类外文文献_第1页
机械类外文文献_第2页
机械类外文文献_第3页
机械类外文文献_第4页
机械类外文文献_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、精选优质文档-倾情为你奉上精选优质文档-倾情为你奉上专心-专注-专业专心-专注-专业精选优质文档-倾情为你奉上专心-专注-专业附:外文翻译外文原文:Fundamentals of Mechanical DesignMechanical design means the design of things and systems of a mechanical naturemachines, products, structures, devices, and instruments. For the most part mechanical design utilizes mathematics

2、, the materials sciences, and the engineering-mechanics sciences.The total design process is of interest to us. How does it begin? Does the engineer simply sit down at his desk with a blank sheet of paper? And, as he jots down some ideas, what happens next? What factors influence or control the deci

3、sions which have to be made? Finally, then, how does this design process end?Sometimes, but not always, design begins when an engineer recognizes a need and decides to do something about it. Recognition of the need and phrasing it in so many words often constitute a highly creative act because the n

4、eed may be only a vague discontent, a feeling of uneasiness, of a sensing that something is not right.The need is usually not evident at all. For example, the need to do something about a food-packaging machine may be indicated by the noise level, by the variations in package weight, and by slight b

5、ut perceptible variations in the quality of the packaging or wrap.There is a distinct difference between the statement of the need and the identification of the problem. Which follows this statement? The problem is more specific. If the need is for cleaner air, the problem might be that of reducing

6、the dust discharge from power-plant stacks, or reducing the quantity of irritants from automotive exhausts.Definition of the problem must include all the specifications for the thing that is to be designed. The specifications are the input and output quantities, the characteristics of the space the

7、thing must occupy and all the limitations on these quantities. We can regard the thing to be designed as something in a black box. In this case we must specify the inputs and outputs of the box together with their characteristics and limitations. The specifications define the cost, the number to be

8、manufactured, the expected life, the range, the operating temperature, and the reliability.There are many implied specifications which result either from the designers particular environment or from the nature of the problem itself. The manufacturing processes which are available, together with the

9、facilities of a certain plant, constitute restrictions on a designers freedom, and hence are a part of the implied specifications. A small plant, for instance, may not own cold-working machinery. Knowing this, the designer selects other metal-processing methods which can be performed in the plant. T

10、he labor skills available and the competitive situation also constitute implied specifications.After the problem has been defined and a set of written and implied specifications has been obtained, the next step in design is the synthesis of an optimum solution. Now synthesis cannot take place withou

11、t both analysis and optimization because the system under design must be analyzed to determine whether the performance complies with the specifications.The design is an iterative process in which we proceed through several steps, evaluate the results, and then return to an earlier phase of the proce

12、dure. Thus we may synthesize several components of a system, analyze and optimize them, and return to synthesis to see what effect this has on the remaining parts of the system. Both analysis and optimization require that we construct or devise abstract models of the system which will admit some for

13、m of mathematical analysis. We call these models mathematical models. In creating them it is our hope that we can find one which will simulate the real physical system very well.Evaluation is a significant phase of the total design process. Evaluation is the final proof of a successful design, which

14、 usually involves the testing of a prototype in the laboratory. Here we wish to discover if the design really satisfies the need or needs. Is it reliable? Will it compete successfully with similar products? Is it economical to manufacture and to use? Is it easily maintained and adjusted? Can a profi

15、t be made from its sale or use?Communicating the design to others is the final, vital step in the design process. Undoubtedly many great designs, inventions, and creative works have been lost to mankind simply because the originators were unable or unwilling to explain their accomplishments to other

16、s. Presentation is a selling job. The engineer, when presenting a new solution to administrative, management, or supervisory persons, is attempting to sell or to prove to them that this solution is a better one. Unless this can be done successfully, the time and effort spent on obtaining the solutio

17、n have been largely wasted.Basically, there are only three means of communication available to us. There are the written, the oral, and the graphical forms. Therefore the successful engineer will be technically competent and versatile in all three forms of communication. A technically competent pers

18、on who lacks ability in any one of these forms is severely handicapped. If ability in all three forms is lacking, no one will ever know how competent that person is!The competent engineer should not be afraid of the possibility of not succeeding in a presentation. In fact, occasional failure should

19、be expected because failure or criticism seems to accompany every really creative idea. There is a great to be learned from a failure, and the greatest gains are obtained by those willing to risk defeat. In the find analysis, the real failure would lie in deciding not to make the presentation at all

20、.Introduction to Machine DesignMachine design is the application of science and technology to devise new or improved products for the purpose of satisfying human needs. It is a vast field of engineering technology which not only concerns itself with the original conception of the product in terms of

21、 its size, shape and construction details, but also considers the various factors involved in the manufacture, marketing and use of the product.People who perform the various functions of machine design are typically called designers, or design engineers. Machine design is basically a creative activ

22、ity. However, in addition to being innovative, a design engineer must also have a solid background in the areas of mechanical drawing, kinematics, dynamics, materials engineering, strength of materials and manufacturing processes.As stated previously, the purpose of machine design is to produce a pr

23、oduct which will serve a need for man. Inventions, discoveries and scientific knowledge by themselves do not necessarily benefit people; only if they are incorporated into a designed product will a benefit be derived. It should be recognized, therefore, that a human need must be identified before a

24、particular product is designed.Machine design should be considered to be an opportunity to use innovative talents to envision a design of a product is to be manufactured. It is important to understand the fundamentals of engineering rather than memorize mere facts and equations. There are no facts o

25、r equations which alone can be used to provide all the correct decisions to produce a good design. On the other hand, any calculations made must be done with the utmost care and precision. For example, if a decimal point is misplaced, an otherwise acceptable design may not function.Good designs requ

26、ire trying new ideas and being willing to take a certain amount of risk, knowing that is the new idea does not work the existing method can be reinstated. Thus a designer must have patience, since there is no assurance of success for the time and effort expended. Creating a completely new design gen

27、erally requires that many old and well-established methods be thrust aside. This is not easy since many people cling to familiar ideas, techniques and attitudes. A design engineer should constantly search for ways to improve an existing product and must decide what old, proven concepts should be use

28、d and what new, untried ideas should be incorporated.New designs generally have “bugs” or unforeseen problems which must be worked out before the superior characteristics of the new designs can be enjoyed. Thus there is a chance for a superior product, but only at higher risk. It should be emphasize

29、d that if a design does not warrant radical new methods, such methods should not be applied merely for the sake of change.During the beginning stages of design, creativity should be allowed to flourish without a great number of constraints. Even though many impractical ideas may arise, it is usually

30、 easy to eliminate them in the early stages of design before firm details are required by manufacturing. In this way, innovative ideas are not inhibited. Quite often, more than one design is developed, up to the point where they can be compared against each other. It is entirely possible that the de

31、sign which ultimately accepted will use ideas existing in one of the rejected designs that did not show as much overall promise.Psychologists frequently talk about trying to fit people to the machines they operate. It is essentially the responsibility of the design engineer to strive to fit machines

32、 to people. This is not an easy task, since there is really no average person for which certain operating dimensions and procedures are optimum.Another important point which should be recognized is that a design engineer must be able to communicate ideas to other people if they are to be incorporate

33、d. Initially the designer must communicate a preliminary design to get management approval. This is usually done by verbal discussions in conjunction with drawing layouts and written material. To communicate effectively, the following questions must be answered:Does the design really serve a human n

34、eed?Will it be competitive with existing products of rival companies? Is it economical to produce?Can it be readily maintained?Will it sell and make a profit?Only time will provide the true answers to the preceding questions, but the product should be designed, manufactured and marketed only with in

35、itial affirmative answers. The design engineer also must communicate the finalized design to manufacturing through the use of detail and assembly drawings.Quite often, a problem well occur during the manufacturing cycle. It may be that a change is required in the dimensioning or telegramming of a pa

36、rt so that it can be more readily produced. This falls in the category of engineering changes which must be approved by the design engineer so that the product function will not be adversely affected. In other cases, a deficiency in the design may appear during assembly or testing just prior to ship

37、ping. These realities simply bear out the fact that design is a living process. There is always a better way to do it and the designer should constantly strive towards finding that better way.MachiningTurning The engine lathe, one of the oldest metal removal machines, has a number of useful and high

38、ly desirable attributes. Today these lathes are used primarily in small shops where smaller quantities rather than large production runs are encountered.The engine lathe has been replaced in todays production shops by a wide variety of automatic lathes such as automatic of single-point tooling for m

39、aximum metal removal, and the use of form tools for finish and accuracy, are now at the designers fingertips with production speeds on a par with the fastest processing equipment on the scene today.Tolerances for the engine lathe depend primarily on the skill of the operator. The design engineer mus

40、t be careful in using tolerances of an experimental part that has been produced on the engine lathe by a skilled operator. In redesigning an experimental part for production, economical tolerances should be used.Turret Lathes Production machining equipment must be evaluated now, more than ever befor

41、e, in terms of ability to repeat accurately and rapidly. Applying this criterion for establishing the production qualification of a specific method, the turret lathe merits a high rating.In designing for low quantities such as 100 or 200 parts, it is most economical to use the turret lathe. In achie

42、ving the optimum tolerances possible on the turret lathe, the designer should strive for a minimum of operations.Automatic Screw Machines Generally, automatic screw machines fall into several categories; single-spindle automatics, multiple-spindle automatics and automatic chucking machines. Original

43、ly designed for rapid, automatic production of screws and similar threaded parts, the automatic screw machine has long since exceeded the confines of this narrow field, and today plays a vital role in the mass production of a variety of precision parts. Quantities play an important part in the econo

44、my of the parts machined on the automatic to set up on the turret lathe than on the automatic screw machine. Quantities less than 1000 parts may be more economical to set up on the turret lathe than on the automatic screw machine. The cost of the parts machined can be reduced if the minimum economic

45、al lot size is calculated and the proper machine is selected for these quantities.Automatic Tracer Lathes Since surface roughness depends greatly upon material turned, tooling, and fees and speeds employed, minimum tolerances that can be held on automatic tracer lathes are not necessarily the most e

46、conomical tolerances.Is some case, tolerances of 0.05mm are held in continuous production using but one cut. Groove width can be held to 0.125mm on some parts. Bores and single-point finishes can be held to 0.0125mm. On high-production runs where maximum output is desirable, a minimum tolerance of 0

47、.125mm is economical on both diameter and length of turn.Milling With the exceptions of turning and drilling, milling is undoubtedly the most widely used method of removing metal. Well suited and readily adapted to the economical production of any quantity of parts, the almost unlimited versatility

48、of the milling process merits the attention and consideration of designers seriously concerned with the manufacture of their product.As in any other process, parts that have to be milled should be designed with economical tolerances that can be achieved in production milling. If the part is designed

49、 with tolerances finer than necessary, additional operations will have to be added to achieve these tolerancesand this will increase the cost of the part.Grinding is one of the most widely used methods of finishing parts to extremely close tolerances and low surface roughness. Currently, there are g

50、rinders for almost for almost every type of grinding operation. Particular design features of a part dictate to a large degree the type of grinding machine required. Where processing costs are excessive, parts redesigned to utilize a less expensive, higher output grinding method may be well worthwhi

51、le. For example, wherever possible the production economy of center less grinding should be taken advantage of by proper design consideration.Although grinding is usually considered a finishing operation, it is often employed as a complete machining process on work which can be ground down from roug

52、h condition without being turned or otherwise machined. Thus many types of forgings and other parts are finished completely with the grinding wheel at appreciable savings of time and expense.Classes of grinding machines include the following: cylindrical grinders, center less grinders, internal grin

53、ders, surface grinders, and tool and cutter grinders.The cylindrical and center less grinders are for straight cylindrical or taper work; thus splices, shafts, and similar parts are ground on cylindrical machines either of the common-center type or the center less machine.Thread grinders are used fo

54、r grinding precision threads for thread gages, and threads on precision parts where the concentricity between the diameter of the shaft and the pitch diameter of the thread must be held to close tolerances.The internal grinders are used for grinding of precision holes, cylinder bores, and similar op

55、erations where bores of all kinds are to be finished.The surface grinders are for finishing all kinds of flat work, or work with plain surfaces which may be operated upon either by the edge of a wheel or by the face of a grinding wheel. These machines may have reciprocating or rotating tables.译文:机械设

56、计基础机械设计基础是指机械装置和机械系统机器、产品、结构、设备和仪器的设计。大部分机械设计需要利用数学、材料科学和工程力学知识。我们对整个设计过程感兴趣。它是怎样开始的?工程师是不是仅仅坐在铺着白纸的桌旁就可以开始设计了呢?当他记下一些设想后,下一步应该做些什么?什么因会影影响或者控制着应该做出的决定?最后,这一设计过程是怎样结束的呢?有时,虽然并不总是如此,工程师认识到一种需要并且决定对此做一些工作时,设计就开始了。认识到这种需要,并用语言将其清楚地叙述出来,常常是一种高度创造性的工作。因为这种需要可能只是一个模糊的不满,一种不舒服的感觉,或者是感觉到了某些东西是不正确的。这种需要往往不是很

57、明显的。例如,对食品包装机械进行改进的需要,可能是由于噪音过大、包装重量的变化、包装质量的微小的但是能够察觉得出来的变化等表现出来的。叙述某种需要和随后要解决的问题之间有着明显的区别。要解决的问题是比较具体的。如果需要干净的空气,要解决的问题可能是降低发电厂烟囱的排尘量,或者是降低汽车排除的有害气体。确定问题阶段应该制订设计对象所有的要求。这些设计要求包括输入量、输出两特性、设计对象所占据的空间尺寸以及这些参量的所有制约因素。我们可以把设计对象看作是黑箱中的某种东西。在这种情况下,我们必须具体确定黑箱的输入和输出,以及它们的特性和制约因素。这些设计要求将规定生产成本、产量、预期寿命、工作范围、

58、操作温度和可靠性。还存在着许多由于设计人员所处的特定环境或者由于问题本身的性质所产生的隐含设计要求。某个工厂中可利用的制造工艺和设备会对设计人员的工作有所限制,因而成为隐含的设计要求的一部分。例如,一个小工厂中可能没有冷变形加工机械设备。因此,设计人员就必须选择这个工厂中能够进行的其他的金属加工方法。工人的技术水平和市场上的竞争情况也是隐含的设计要求的组成部分。在确定了要解决的问题,并且形成了一系列的书面的和隐含的设计要求之后,设计工作的下一阶段是进行综合以获得最优的结果。因为只有通过对所设计的系统进行分析,才能确定其性能是否满足设计要求。因此,不进行分析和优化就不能进行综合。设计工作是一个反

59、复进行的过程。在这个过程中,我们要经历几个阶段,在对结果进行评价后,再返回到前面的阶段。因此,我们可以先综合系统中的几个零件,对它们进行分析和优化,然后再进行综合,看它们对系统的其他部分有时么影响。分析和优化都要求我们建立或者做出系统的抽象模型,以便对此进行数学分析。我们将这些模型称为数学模型。在建立数学模型时,我们希望能够找到一个可以很好地模拟实际物理系统的数学模型。评价是整个设计过程中的一个重要阶段。评价是对一个成功的设计的最后检验,通常包括样机的实验室实验。在此阶段我们希望弄清楚设计能否真正满足所有的要求。它是否可靠?在与类似的产品的竞争中它能否获胜?制造和使用这种产品是否经济?它是否易

60、于维护和调整?能否从它的销售或使用中获得利润?与其他人就设计方案进行交流和沟通是设计过程的最后和关键阶段。毫无疑问,有许多伟大的设计、发明或创造之所以没有为人类所利用,就是因为创造者不善于或者不愿意向其他人介绍自己的成果。提出方案是一种说服别人的工作。当一个工程师向经营、管理部门或者其主管人员提出自己的新方案时,就是希望向他们说明或者证明自己的方案是比较好的。只有成功地完成这项工作,为得出这个方案所花费的大量时间和精力才不会被浪费掉。人们基本上只有三种表达自己思想的方式,即文字材料、口头表述和绘图。因此,一个优秀的工程师除了掌握技术之外,还应该精通这三种表达方式。如果一个技术能力很强的人在上述

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论