Chapter3纯流体热力学性质(PartB)_第1页
Chapter3纯流体热力学性质(PartB)_第2页
Chapter3纯流体热力学性质(PartB)_第3页
Chapter3纯流体热力学性质(PartB)_第4页
Chapter3纯流体热力学性质(PartB)_第5页
已阅读5页,还剩60页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、1Chap er 3Part B22. Residual properties by EOS1)Virial EOS If P 1.5 MPa,the compressibility factor is given by the two-term Virial EOS,(3-27)(3-28)And recall(2-7)(3-26)3Since B and dB/dT are only functions of temperature, independent of pressure.4(3-52)(3-53)(3-54)5方程中以1/V,即为变量。用该公式计算剩余性质时,必须对剩余性质计算

2、公式(3-2628)进行积分变量的替换,将压力P 替换成密度 。If 1.5 MPa P Pc,the compressibility factor is given by the three-term Virial EOS,6From the definition of compressibility, Differentiation at constant T gives:7(3-60) Note that 0 and Z1, when P0. GR(3-26)8Since (3-22)(3-19)Division by dT and restriction to constant yie

3、lds: HR9SinceAnd since(3-60)(3-61)Substitution leads to:10前面,将积分变量为 dP 的Eqs(3-2628)变换成了积分变量为 d 的Eqs(3-6062)。通过积分变量的替换后,即可用三项Virial EOS计算GR、HR 和SR 。Since (3-25)(3-62) SR11Substitution of (A) and (B) into Eqs. (3-6062) and integration lead to:From the three-term virial EOS,(A)(B)(3-57)(3-55)(3-56)122)

4、Residual properties by Cubic EOS 与三项Virial EOS类似,Cubic EOS是以V()和T 为隐函数的方程,用它们计算剩余性质时,同样也需对剩余性质计算公式中的积分变量进行替换,将积分变量P 替换成摩尔体积V 或密度 由于具体的Cubic EOS形式众多,结合Eqs.(3-6062)(p75)会得出不同的剩余性质表达式,不便查阅,因此,下面以通用的Cubic EOS 来介绍剩余性质的计算方法13The General Cubic EOS is given bySince(3-63a)Let(3-65)(3-64) Note: q is the funct

5、ion of T only14计算剩余性质公式(3-6062)中需要的两个积分项:And You can prove this.15LetThen the two integrals simplify to :The two integrals needed :16LetThen GR(3-66)(3-69)(3-60)17 HR and SR(3-68)(3-67)(3-61)(3-62)18For integral 1#: Since2#: =(3-70)(3-71)19Example 3-4试用RK EOS 估算25 MPa、410 K时CO2 的HR、SR 和GR。Solution:比

6、较RK EOS与General Cubic EOS:RK EOS 中的参数a(T) 和 b 的计算公式:(2-16a)(2-16b)20查附表1,CO2 的 Pc = 7.375 MPa,Tc = 304.2 K,1) 求25 MPa、410 K 时CO2 的压缩因子Z。将Cubic EOS 重写成下面的迭代形式用理想气体摩尔体积作为初值,迭代求出CO2的摩尔体积,然后计算出压缩因子Z。也可直接写成求气体压缩因子的迭代方程,再用迭代法求CO2的压缩因子。21将General Cubic EOS左右两边同乘以 P/RT,然后用 Z 表示 V,得到引用定义用General Cubic EOS 求气

7、体压缩因子的迭代方程为 迭代初始值为理想气体的压缩因子(A), p7722求CO2气体压缩因子的迭代RK方程为迭代结果为计算结果为:232) 计算剩余性质, Case 1: (3-70)24将各参数代入Eqs(3-6668)25Calculate the residual properties普遍化方法计算剩余性质1) Pitzer 普遍化压缩因子法各项数值通过查图3-13-8 获得与压缩因子的关系:与PVT的关系262) Pitzer 普遍化第二维里系数法 普遍化方法计算 HR 和 SR 的适用范围与用普遍化方法计算流体 P-V-T 关系的适用范围相同27Residual propertie

8、s by EOS1)Virial EOS 两项维里EOS 三项维里EOS 282)Residual properties by Cubic EOS 29上述将剩余性质计算公式中积分变量由压力P 替换成密度,再用Cubic EOS计算流体剩余性质的方法通用性强,但过程比较复杂。另一种较为简单的方法:从剩余性质与PVT关系式出发,得到直接计算MR的公式。缺点是MR公式随不同的Cubic EOS 而有不同的形式。Residual properties by an alternative method30 HR 的计算 曾记否? SR 的计算 31Problem用RK EOS 估算25 MPa、410

9、 K 时CO2 的HR、SR。SolutionR-K EOS: 剩余焓公式:32积分项:33剩余熵公式:积分项:34RK EOS 中的参数 a 和 b 的计算公式为对于CO2 气体,Pc = 7.375 MPa,Tc = 304.2 K,用迭代法求CO2 气体的摩尔体积。35V 的迭代初始值为迭代方程为经5次迭代,36 与例 3-4 结果相符 剩余焓:37 与例 3-4 结果相符 剩余熵:383. 剩余性质计算流体热力学性质变化量真实流体由 state 1 (T1,P1)变化到 state 2 (T2,P2), 其热力学性质的变化量M 的计算,可设计下面路线:Step 2 Step 1 Ste

10、p 3 State 1 real fluidT1, P1State 2 real fluidT2, P2 (ideal gas) T1, P1 (ideal gas) T2, P2三步解题法:39 Step 1:Step2:是真实流体在状态1时的剩余性质; 是理想气体的性质变化量:(3-12)(3-13)40Step 3: 是真实流体在状态2时的剩余性质。41ProblemEstimate H and S for n-butene vapor at 473.15 K and 7 MPa if H and S are set equal to zero for saturated liquid

11、at 273.15 K. Assume that the only data available are:Tn= 267 K (normal boiling point) Tc= 420.0K Pc= 4.02MPa = 0.191 42SolutionAnalysis: Since the properties of n-butene at the state of saturated liquid at 273.15 K are zero (reference state), we must design a path, which is the change of n-butene fr

12、om the state of saturated liquid at 273.15 K to the state of vapor at 473.15 K and 7 MPa, and the properties of n-butene vapor at 473.15 K and 7 MPa are the same as the property changes of the process. Here we use four-step calculational path, which is similar to three-step calculational path, to do

13、 this job. The four-step calculational path is illustrated with the following figure. 43 Step 1 Saturated VaporT1, P1Step 2 Ideal Gas T1, P1 Step 3 Ideal Gas T2, P2Step 4 State 1 Saturated LiquidState 2 Vapor 273.15K, P1T2, P244P1:The saturated pressure of n-butene liquid at 273.15K is determined by

14、 the following method:At normal boiling point, Tn = 267 K, Psat =1.0133 bar; at critical point, Tc = 419.6 K, Pc = 40.2 bar. Therefore we can obtain the solution of A and B as A = 10.126 B = 2699.11 Then we calculate the saturated pressure of n-butene liquid at 273.15 K as Psat = 1.2771 bar. (P1=1.2

15、7 bar)45Step 1: Vaporization of saturated n-butene liquid at 273.15KH lv is the latent heat of vaporization. The latent heat of vaporization at normal point, , is calculated by the following Riedel equation With Tn = 267 K, Tr,n= 267/419.6 = 0.636, and Pc = 4.02 MPa, the calculation result is.The va

16、porization of saturated liquid is an reversible process.46The latent heat of vaporization at 273.15 K is estimated using the following Watson equationWith Tr =273.15/420=0.65, the calculation result is 47Step 2: The transformation of saturated n-butene vapor into an ideal gas at the conditions of T1

17、 = 273.15 K and P1 = 1.2771 bar.Due to the EOS of saturated n-butene vapor at T1 = 273.15K and P1 = 1.277 bar is not known, we should use the Pitzer generalized methods to calculate the residual properties.Tr,1 = 0.651, Pr,1 = 0.036148Since the pressure is relatively low, we can use the generalized

18、Pitzer Correlations for the second virial coefficient to evaluate 4950Step 3: Property changes in the ideal-gas state from (273.15 K, 1.2771 bar) to (473.15 K, 70 bar). 5152Step 4: Transformation of n-butene from the ideal gas into vapor at the state of T2 = 473.15 K and P2 = 70 bar. Also due to the

19、 EOS of n-butene vapor at T2 = 473.15 K and P2 = 70 bar is not known, we should use the Pitzer generalized methods to calculate the residual properties.53Tr,2 = 1.13, Pr,2 = 1.74we should use the generalized Pitzer Correlations for the compressibility factor to evaluate Since,From Figs 3-2, 3-4, 3-6

20、 and 3-8, the following results are obtained :54Finally,553.5 液体的热力学性质 Section 3.4 建立的用剩余性质计算流体热力学性质的各种方法,对纯气体和纯液体,或者组成不变的气体和液体混合物都适用。对于液体,剩余性质计算时涉及到相态的变化,即液体的汽化,必须考虑相变过程中热力学性质的变化量,如焓变和熵变,因此,液体剩余性质的计算相比气体而言要复杂一些,需要的基础数据也相对较多。56对于温度为T 压力为 P 的液体,其剩余性质的计算过程可设计下面的路线进行:Step 1 Saturated LiquidTs, PsStep 2 Ts, PsStep 3 Unsaturated LiquidT, PT, P Saturated VaporIdeal Gas Unsaturated VaporT, PStep 4 57Step 1:不饱和液体温度、压力发生变化,变成饱和液体,M(L);Step2:饱和液体发生可逆汽化,变成饱和蒸汽,MLV;Step 3:饱和蒸汽温度、压力发生变

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论