




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、催化的_点总结2015,07,271有关光催化2.有关气体传感【二者的相同点是都运用到了半导体的能带理论】光催化主要用是催化剂利用太阳能转换为化学能,来进行催化降解有机染料或对水进行杀菌处理气体传感(主要是用金属氧化物半导体作为传感材料),通过在高温下对不同气体具有电流响应信号,从而达到岀现不同的电阻响应,以此为信号,来检测气体的效果。这里开始讲光催化光催化方面存在的问题主要有:A延缓电子空穴的复合B将利用光谱范围从窗外区域扩展到可见光区。C.催化剂的回收改进方法:催化剂分为TiO2和非TiO2两种类型,TiO2(它应用的紫外光仅占太阳光的4%)是研究最广泛的催化剂,针对以上催化剂存在的问题,
2、做岀的努力包括:合成方法的改进,调控材料的内部构造、形貌和尺寸等。TiO2催化剂和非TiO2催化剂(包括金属氧化物、硫化物、铤金属酸盐、基于石墨烯的材料、碳氮催化材料和自然催化剂)要做的改进包括贵金属沉积、非金属掺杂、染料敏化。6光催化机理:光激发电子空穴对的分离,我们要做的是延缓电子空穴对的分离光催化性能的提高本质因素导体带隙的电子势能,具体就是导带的电势要比O2/O2的氧化还原电势更负,价带的电势要比-OH/OH-的氧化还原电势更正。例如Bi2WO6价带中空穴的氧化电势+1.59V-OH/OH-的氧化还原电势+1.99VBi2WO6产生的空穴不会与OH-/H2O反应产生oh;SnO2粤带底
3、中还原电势-0.11V06nm)H3O2,6WangetaL,2011AgBr-TiO2DepositionprecipitationmethodNanoparticles.coHS.aureus-7login1hr*7login40minXenonlampwithfilteT(k420nm)Hd05,OHLanetal.F2007A商-Ag-BiiWCkHydrothemnalNanoparticles.nanoplatescoti-71ogin15minXenonlampwithfilteT(k400nm)OHZhangetalr2010BgHydrothemnalSubmicrorods
4、.coti-7login120minXenonlampwithfilteT(k400nm)0Hrh*WangetaLP2015Cdln各UltrasonicspraypyrolysisMacrospheTesE.coti-7Login3hrXenonlampwithfilteTk400nm)HiOiWangetal.,2013a,bBiVqHydrothermalNanotubesE.coti-Slogin3hrXenonlampwithfilteT(k400nm)e-Wangetal.?2012a.b,cNatura!sphaleriteNaturalkCicioparticlesE.cot
5、iM.barfeeri-7Login3hr-7Login10hrFluorescenttubesHiO2,e-Chenetal.,2010,ChenetaLf2015NaturalmagneticsphaleriteNaturalkticroparticlesE.ati-7login6hrFlu-orescenttutwsONH2O2Xiaetal.,2Q13RedphosphorusCommercialkCicioparticlesE.coti-71ogin90minXenonlampwithfilter(k400nm)OHtOj,HaOiXiaetrL,2015-近些年大家研究的催化材料L
6、ETTERpubs承org/NanoLettNANOTERS)FollowingChargeSeparationontheNanoscaleinCu2O-AuNanoframeHollowNanoparticlesMahmoudA-Mahmoud,WeiQian/andMostafaA.El-Sayed*LaserDynamicsLaboratory,Schoo!ofChemistryandBiochemistry,GeorguInstituteofTechnology,Atlanl召Georgia30332-0400,UnitedStatesABSTRACT:GoldnanoframeH2O
7、+6+OH:0246810Tknedetay(R)2011/07Cii?。一AunanotrameswithdifferentnanolayerthicknessesofCu2Owereprepared,andtheirphotocatalylicpropertiesmaqueoussolutionswerestudied.CuOsemiconductorexcitationleadstoelectronholeseparabon.Inaqueoussolution,theholeisknowntooxidizewatertoproducehydroxylradicalswhoseconcen
8、tration(andthatoftheholes)canbemonitoredbytherateofthedegradationofdissolvedmethylenebluedye.Theexcitonlifetimeisdeterminedbyfemtosecondtechniquesandisdeterminedbyelectronholerecombinationwhichdependsontheratesofanumberofcompetingprocessessuchelectronorholetransferto文章属于金属氧化物半导体与贵金属Au复合的一种,主要讨论Cu2O厚
9、度的变化对催化性能的影响。运用的飞秒技术测量电子空穴分离时间FigureI.TEMimagesof80nmCii2O-Aiinanoframeofdifferentthickness;thethickincreasesinthisorderCu2O(l)-Au(A),Cu2O(2)-Au(B),Cu2O(3)-Au(C),andCu2O(4)-Aunanoframes(D).Thescalebarsare100nm.上而是4个壁厚不同的Cu2O,AD壁厚依次增加,这里的催化实验进行横向比较,比较不同厚度的CU2O的催化效果。催化降解MB002400220020wE001800160.01400
10、120010Cu?O(4)-AuCu?O(3)-AuCu2O(2)-AuCu2O(1)-AuH-Cu.OnM/minijnthefirst10min:Cu0O(4)-Au=2.5nM/Cu?O(3)-Au=1.4nM/minCu.O(2)-Au=0.92nM/minu?O(1)-Au=0.62nM/min0102030,.405060Time(min)Figure5.TheeffectofphotochcmicallyexcitedCu2OnanosphcrcsandCuzOwithdiflerentthicknesses,coatedaconstantsheUthicknessofAushe
11、llontherateofphotocatalyticdestructionofMBinsolutionTheinitialrateisfoundtoincreasebyincreasingtheCu2Othickness通过这两个吸收光谱,我想表达的意思是,通过与贵金属复合后,材料应用的光区域扩展了oolmqjosqv0.2-0130040050060070080090010001YoO12001300Wavelength(nm)FigureS4.UV-visabsorptionspectraofvaiiousCgOnaiiocrystalssynthesized.Crystal-Plane
12、DependentEtchingofCuprousOxideNanoparticlesofVariedShapesandTheirApplicationinVisibleLightPhotocatalysisJayaPal/MainakGanguly/ChanchalMondal/AninditaRoy/YuichiNegishiandTarasankarPal*DepartmentofChemistIndianInstituteofTechnology,Kharagpur-721302,WestBengal,IndiaDepartmentofAppliedChumistiy.TokyoUni
13、versityofScience,Tokyo1628601,Japan0SupportinginformationABSTRACT:Wereportasimple,facile,surtacta.nt-freechemicalroutetofabricatemorphologicallydifferentCuOnanopartidessuchasoctahedron,truncatedoctahedron,hoLlowoctahexlronj,cubeandspherebyvaryingthehy&olyzingagentscomplexingagent?andreducingagentsTh
14、enthecomponentiaJandmorphologicalevolutionofCu2Onanopartideshavebeenstudiedindependently,employingdifferentetchingagents,suchasaqueousNaOH,triethylamine(TEA),andoxilicacidsolution.Particlesofvariedshapesandcompositionsresultedfromtheetching,andthoseparticleswerecharacterizedbydiflerentphysicalmethod
15、sTheoxidativedissolutionofrftdrphologicillydiffereAtCuOhAndpArticldwithdiflerdrttetedtingd中亡ilckOrt:nanopartides.OxalicacidetchingcausesthetheexposedcrystalplanesDuringoxidativedissolutioninaqueousoxalicacidsolution,itisrealizedthatthestabilityofthe(100)cr*staJplaneishigherthanthatofthe(ill)crystalp
16、laneAmongalltheetchingreagentsused,onlyoxalicacidexhibitsskapetransformationoftkeas-preparedCu2OfbntitiOrldlCubdSirtdhdllowISLehirlgpFbduCtfwith2SO%reduCtiOilof亡dgCleilgthComparedtthatdfdCtahIrAl,2013/11truncatedoctahedral,andhollowoctahedralCuOnanopartidcs.Butill-dciincdcubesarealwaysobtainedas.the
17、etchingproductswitha40%reductionofsizecomparedtothatofCu2Ocubesandspheres.As-preparedCu2Onanoparticlesandchemicallyetchedproductsexliibitfacet-dependentphotocataljlicactivityundervisiblelightirradiationwkeremineralizationofCOrigOredtk出place.ExperiitleritallyithASconcludedphdt(Ctllytidactivityofdiile
18、reiltparticlesbeirS玄vldg亡relationshipwithexposederystalplanes,surfacearea,andpartidesizeforeongoreddegradationInterestingly,NaOH-etehedproductwithhollowoctahedralmorphologybearingmany(111)facetsdemonstratesthehighestphotoatalyticactivit)f这篇文章讲的是通过对半导体材料形貌的控制,使其光催化范围达到可见光区这幅图呈现了不同的形貌,以蓝色的八面体Cu2O,进行加碱
19、刻蚀后,会形成表面粗糙或空心的结构,这个蓝色系列的催化活性高,因为暴露的活性面较多Scheme2.SchematicRepresentationofChemicalEtchingofCu2ONanoparticlesHavingVariedShapes;SameColoroftheEtchedProductsObtainedfromCu2ONanoparticleofaParticularShapea,a28401ooo(ne)eoueqosq200300400500600700Wavelength(nm)aoueqosqinilialAfteradsorption10min5min00200
20、300400500600700WvalonnthZnm(nra)aoueqosqOcuboctahedra,andCu2Ooctahedrarespectively.TheseCuvODTiOipolyh-cdrademonstratedajienhancedphotocatalyticddrdatiohefltiCtOhMdthyleneBlue(MB)arid4-rtitr(phertdl(4-NP)undervisiblelightillumination,becauseoftheenhancedchargecarrierseparationbytheformationofCu2OTiO
21、2p-nheterojunctions.Itwasfurtherfoundthattheirphotocatalyticperformancewasalsofacet-dcpCildertt邹pureCu2Opolyhedra,whilethdphotOdAlytivperfdml-7叫l?Ti.02polyheirawasdiflerentfromtheircorrespondingCu,Opolyhedroncores,whichresultedintheirdiflerentsurfacephotovoltagespectrum(SPS)responsesanddifferentphot
22、ocatalyticperformancerankings.这篇文章讲的是通过P型的Cu2O与N型的ZnO复合,形成PN结构,同样使催化范围延伸到了可见光区域。亮点是通过XPS谱,计算得到了材料催化性能的依据Cu2OTiO2复合材料,这里对Cu20的形貌进行了调控,不同的形貌在与TiO2复合,形貌改变+复合新的材料使Cu2OTiO2具有更好的催化效果Figure4.SEMandTEMunagesofCu?OTiO2cubes(panels(a)and(b)rcuboctaliedra(panels(c)and(d),andoctaliedra(panels(e)and(f).Tlieinser
23、tsinTEMimagesshowthecorrespondingSAEDpatternsonthecovershellregionsdefinedbytheredsquaie.tS05&31cpdtER_enppaHb血806020Time(D)Rpxrc9.IksiduaiMcmykncBlue(MB)pcrccsiUcwjustreatmenttimeuadeTvisfoieUghttreatnemby(aCujOuryrtL7thwellticcts.ccmpucdwithdutwithnophotoeMdystpresence,ind(b)Cu.ODOjpolvhcdrcompare
24、dwithtiutbynat&cTiO.nnopamResided4nxrophcnol(4-NP)pcrcctitcvctjbucatmntumounJerzbkZghrtreMmentbyCu.OgTiO;p-ncdwnhCtijOcubiKtaliedraandthi!withnophotzidypre*enc根据上面降解MB得到的数据说明,根据图C红色曲线得到Cu2OTiO2效果最好运用光致发光谱来探究材料的电子空穴的分离效果,发现八面体的Cu2OTiO2分离:寫效果最好tlucby-64oo2ooo300350400450500550600Wavelength(nm)Figure8.
25、Surfacephotovoltagespectroscopy(SPS)spectraofCu2O(2)TiO2coreshellpolyhedra,comparedwiththatoftheas-synthesizedCu2OcuboctahcdraNanoscaleRSCPublishingPAPERViewArticleOnlineViewJournal|VrewIssueCitethis:HanoscRe.2013.52938Carrierconcentration-dependentelectrontransferinCu2O/ZnOnanorodarraysandtheirphot
26、ocatalyticperformancetTengfeiJiang,TengfengXie/LipingChen,ZewenFuandDejunWang*Received21stDecember2012Accepted20thJanuary2013DOI:10.1039/c3nr34219k HYPERLINK /nanoscaIeIrtthiimpmhav6电th6l&tronicstrudurihCu20/Zri0nandrodarrays,v/aadjustihth$carviercodentrntiaofCu2O,andappliedthomtophotoeatalysis.Thop
27、hotoindueedtrardfe-rkirt6tiatth$btwnCu20and2n0wxqsystomtiullyinvest!oat6d.Th。Cw2O(pH11.0)/2nOrtanorddarrayshaveth6largestmaghitudofihterfadale?teetrkfield,andphotoinducdchwrgisearrh&疔can血paratodrapidlyandeffidrttly,whkhgeneratesth$high。phot(xatalytieffidhdyfortherduetionofrrithylvidlogen.HUYdjundtid
28、fitohstruetiortisxdtindirxtioctopureoforhighly1aetivphotoeatalyits.andakooffersopportunitiestoicwstig占诞th。rdatiohhipbetwnthe6tedronirsis/Recently,considerableattentionhasbeenpaidtoconstructingsemiconductorheterojunctionswithcontrollableinterfaceelectronicstructure?Asisknown,thepropertiesofthejunctio
29、ndominatethebehaviorofphotoinducedchargecarriers,splitting16becauseofitsfavorableabsorptioninthedsiblerangeandadditionaladvantagesofnon-toxicity,lowcostandabundancePhotoinducedchargeseparationinCu20/ZnOheterostructurescanbegTeatlyimprovedduetotheirfavorablebandstructureHowever:,toourknowledge,therea
30、refewreportsinvolvingCu2O/Zn0nanorodarraysforphotocatalysisstudies.Inheterojunctionphotocatalysts,themagn让udeoftheinterfacialelectricfielddependsonthedifferenceincarrierconcentration.(i.e.Fermileveldifference)betweenthetwo这篇文章是在棒状ZnO上复合Cu2O颗粒来提高催化效果通过表而光伏法(SPV),SPV法研究Cu2O与ZnO界面间光激电子的转移,测量材料表面的瞬态电压的变
31、化来表征电子空穴的分离效果,做的对比试验是在不同PH值下,生长得到这些ZnOCu2O结构ZnOCu2O结构,在不同PH值下沉积Cu20的性能不同,PH=11时电子空穴分离效率最好,催化降解甲基紫精效果最好500nm2000.248nmVSpotH;ionDotWOfxpkV3040000XSE1030审ZnO(101)Fig.1SEMimagesofZnOnanorodarrays(a)andCu2O(pH11.0)/ZnOnanorodarrays(b),TEMimagesofZnOnanorods(c)andCu2O(pH11.0)/ZnOnanorod(d),HRTEMimageofCu
32、2O(pH11.0)/ZnOnanorod(e).ZnOCu2O(pH11.0)/ZnOCu2O(pH10.0)/ZnOCu2O(pH9.0)/ZnO300800400500600700Wavelength(nm)Fig.3UV-vistransmittaneespectraofZnOnanorodarraysandCu2O/ZnOnanorodarrays.通过这幅图可以看岀单独的ZnO纳米棒吸收峰在360nm处,复合Cu2O后,吸光区延伸到可见光区,达到利用可见光的目的(a)图中ZnOCu2O材料在PH=11时,SPV的频率在88Hz时,能达到最大值,说明该复合材料拥有较大的SPV值;(b
33、)中Cu2O/ZnO纳米棒阵列的SPV值与光强度成正比,所以该材料具有较大的SPV值,利用光的效率高150511(弍)o4oudCu2O(pH11.0)/ZnOaa5053a65oolld1001000Modulationfrequency(Hz)345678910Lightintensity(mW/cm2)Fig.5(a)ModulationfrequencydependentSPVofCu2O/ZnOnanorodarraysat532nm.Thelightintensityis10mWcm2,(b)LightintensitydependentSPVofCu2O/ZnOnanorodar
34、raysat532nm.Themodulationfrequencyis77H2DispersedCu2OOctahedronsonh-BNNanosheetsforp-NitrophenolReductionCaijinHuanWciqingYc,QiuwenLiu,andXiaoqingQiu*ResearchInstituteofPhotocaitalysi為StateKeyLaboratoryofPhotocatalysisonEnuirgyandEnrironmentrCollegeofChemistry,FuzhouUniversity523GongyeRoad,Fuzhou350
35、002China0SupportingInformationABSTRACT:Wedemonstrateherethattwo-dimensionalboronnitride(hBN)naAoshcetsbeemployedasarobustsupporting沁bstratttoincorporatefunctionm亡taioxides.TheCuOhBNcompositesakthusobtainedbydispersingCujOoctahedronsonthesurfacesofh-BNnanoiheets.TheOHandNHgroupsonthesurfacesofh-BNnan
36、osheetsarefoundtobebeneficialforanchoringCu2Ooctahedrons.MoreaveTj,theCuiOh-BNcoitipositcsExhibitsuperiorictivitylorthereductionofpaitrophenoltopureCujOcrystal,andh-BNnanosheetsThehBNcomponentinthecompositesphysacriticalroleintheformationandadsorbingofthepnitrophenolateions.,and,atth疋sametime,Cu2Op-
37、nltrophcnol”p-AminphttnifrlMQBoOcCH/1-BNnanosheatsvomponentsreactwithbrohydrideiOilS&ndLruiSkrasurfacehydrogen羊亡&亡sandresultinginthereductionofp2014/07iiitrophenolinto严amhiophmoLOurresultsprovide直newapproachfortherationiddesignanddevelopmentofm亡taioxidescompositesandopenthewaytoarangeofimportantappl
38、icationsofh-BbJ-bascdmaterialsKEYWORDS:CuqQhBNpiupporfingiufrifrafes,composikpnitrophenoireduction这篇文章讲的是颗粒Cu2O与二维的hBN复合,这里hBN类似与GO的作用,表而具有导电性且具有丰富的基团来固定催化剂,也能吸附待降解的有机染料。H-BN的应用确保了Cu2O具有良好的分散性,更促进了Cu2O与有机染料的接触与反应,从而提高催化活性Figure3(a)SEXIimagesofCu2O,(b)SEMimagesofCu2OBNcomposites*(c)TEMimagesofCu2OBNc
39、omposites,and(d)thecorrespondingHRTEMimages.Cu2O颗粒均匀的分布在hBN上,就确保了具有更多的催化活性位点,再结合hBN的独特性质,使催化效果更好2.00.0Wavelength(nm)anB)aoUBqosqp-typeoxidesemiconductorsIntulatingcer.Ehrew*Unl解仏这些问题,大家采取的措施是:1材料结构与形貌的调控2电子敏华(导电阳离子的掺杂)3化学敏化(负载贵金属)4不同类型材料的复合(例如结)具体来说影响气敏传感的因素:(1)多孔性和比表面积掺杂剂颗粒的尺寸,具体就是敏感膜的厚度、晶粒尺寸、多孔性、活
40、性比表面积、晶面、团聚情况、表面几何参数、传感器的几何参数、表面无序度、膜的织构、晶粒网络和颈部尺寸,外加很重要的就是掺杂剂。提高气敏传感的方法:(1)减小材料的尺寸采用分级和空心结构这几年催化领域制备的一些暴露高活性面的材料可以提升性能,所以气敏里面也就插了一脚,把活性面暴露岀来,做岀更多的悬空键掺杂,掺杂能够影响到晶粒尺寸、晶体的形貌、体相和表面的化学计量、晶粒间的势垒的特性及基体材料的电物理特性。掺杂产生的效果包括形成结、产生过渡区域、改变金属态的化合价等。掺杂会导致在价带或导带附近形成新的杂质能级,并且能够改变载流子的浓度和迁移率。(1)调节形貌(2)掺杂添加剂达到电子敏化的效果(3)
41、负载贵金属或与气体材料复合(1)形貌:a小尺寸的纳米颗粒易于与气体分子接触,从而发生反应,因此减小尺寸能很大限度的增加气敏响应。b颗粒间的接触也是至关重要的,对于静电纺丝得到的Co3O4纳米纤维的响应值达到45.3,而经过超声处理使其完全成为颗粒后,响应值仅为2.71(两种形态的结晶尺寸完全一样),所以在结晶尺寸一致的情况下,增加颗粒间的直径尺寸可以增加气体响应。上面超声过的纳米纤维响应的减少是因为颗粒之间的联结尺寸的减少(2)控制掺杂来进行电子敏化:调节电荷载体的浓度,从而影响半导体金属氧化物的电子与空穴的分离效果;掺杂改变N型的电子浓度,改变P型的空穴浓度,达到响应信号的增强105掺杂影响
42、%1/(eFe掺杂到NiO中增强了材料对气体的响应值Eddbuoo50据2OWOT6oO11(u)eouss一sea01000200030004000Time($ec)50006000700020406080100Concentration(ppm)因为P型氧化物半导体多数是过渡金属,不止一种化合价,所以这些材料展现出了较好的选择性,能促进挥发性有机物像CO,NH3,C2H6,CH3CHO,C6H6等的氧化,这都是由于材料具有多种氧化态有关。如用Cr掺杂的NiO对甲苯和二甲苯具有高的选择性响应,没有掺杂时就没有这种效果11.S1xylenetoluenebenzeneHCHOEthanolxy
43、lenetolueneberueneHCHOEthanolFig.12.Responsesof(a)pureNiOhierarchicalnanostructuresand(b)l.15atXCr-dopedNiOhierarchicalnanostructuresto5ppmo-xylcnettoluene,benzene.formaldehydeandethanolmeasuredat400匸accordingtoRefL149.发现掺杂后在这些挥发性有机气体中,Cr-NiO对甲苯和二甲苯具有选择性【因为Cr对甲基团具有催化氧化作用,致NiO的空穴浓度减少】所以合理的化学敏化掺杂不仅能提高
44、p型半导体对气体传感的响应能力,还能提高材料对传感气体的选择能力。这一结果是n型半导体办不到的pn型材料的复合这两幅图是PN材料的不同接触形式,接触形式的不同影响材料间电子的传输,从而直接影响材料的传感效果。X/a图先经过电沉积得到p型和n型,在挤压在一起。c图通过溅射和光刻技术形成CuO-ZnO的接触,这种接触效果明显好于之前Table1Vanousp-typemetaloxidesemicondncior-twisedgassurveyedinlicerawre|22-54|.SensormaterulTargetgasStructuresPaniclesi2e(nnn)Cis-conce
45、ntranon(Ppm)Sensing【amp.(C)R2&NiONanoflowersNanotubesNaiw-wiresHemispheresioO-soo20-200150-400|22-26HCHOHollowspheresPorous(hinfilmsThinfilms1000-20005-100240-35027绚COHierarchicalNSs4350020180-2601301NHmNanowiresITendricicwres150-20050ftl(room(*enMKracure)i3】32|(CH3)3NNanowires230500350R5|CuOCjHsOHN
46、lanopartidesNanorodsHierarchicalNSsThinfilm100-10.00050-1000RT-240133-36出rchin-hlNSiPoroustSiftfilm3000loa-iow20O-3D0137381bhSNanowiresNanorodsNanw-hwtsHollowspJieresThinfilm100-15.0000.1-100fCI-30039Y?NHxNanowares1001D.CXK1K!1+11CogGtisOHNaivocubesMiaro5pheres20600010-500135-20007HCHONaiwxriysuls43
47、0-560loa-iooo2001侣1Q叫(硼Nanocubes20100-200ZOO|晌56CiHsOH、佬soporousNSs.Thinfilm20-62125Q-10W30O-4SD1-19-51H2SThinfilm621mao1701511C6H4(CH3)Miaro5pheres12002oa300-450I52|M03O4GHsOHNanowires502.5-100300-450|53)LaCKl-NiOCiHsOHNanofibers100010a400|5叫文献中各种金属氧化物半导体对应的检测气体EffectofAuNanorodsonPotentialBarrierM
48、odulationinMorphologicallyControlledAuCu20Core-ShellNanoreactorsforGasSensorApplicationsSanjitManoharMa|hi,PrabhakarRai,*SudarsanRaj/Buin-SooChon,KyungKucnPark/andYcon-TacYu*ADivisionofAdvancedMaterialsEngineeringandResearchCentreforAdvancedMaterialsDevelopment,CollegeofEngineering,ChonbukNationalUr
49、aiversityrJeonju561-756rSouthKoreaDepartmentofMaterialsScienceandEngineering,.KoreaUniversity,Seoul1S6-701,SouthKorea0SupportingInformationABSTRACT:InthiswrkAuCu2OeOreshellilAiiOparticks(NPi)weresynthesizedbysimplesolutionrouteandappliedforCOsensingapplications.Au(3iCujOcoreshellNPswereformedbythede
50、positionof3060nmCuxOshelllayeronAunanorods(NR&)having1015nmwidthand4060nmLength.ThemorphologyofAuCuOcoreshellNP$wastunedfrombricktosphericalsJiapebytuningthipHolthesolution.IntheabsenceofAuNRs,cubclikcCuONPshaving200nmdiameterswereformed.ThtsensorhavingAu(Cu0coreshelllayerexliibitedhigherCOsensitivi
51、tycompirtdtobareCuONPsLayer.Tuningofmorpholog*ofAu(Cu.2C)coreshellNPsfrombricktosphericalshapesignificandyloweredtheairresistance.Trnsitiortfrompton-typeresponsewobarvedfor1devieInelow150CItwasdemonstratedthatperformanceofsensordependsnotonlyonthedectxonicsensitizationofAuNRsbutalsoonthemoqholagy-of
52、theAuCuxOcoreshllNPs.PITe=el5odpAuCu,0Sp*iresAuCm2OBHc吗PTI!-一ocirGdee-earod3ptlsedmre2014/08KEYWORDS;cowshillnaMpariiclcdepletionlayxrgas$ctuors,COP型材料中加入Au后,达到对材料势垒调节的效果。这里通过调节PH值控制AuCu2O材料的形貌,从而改变材料间电子传输。调节用量来控制Cu20壳层的厚度,再调节PH控制材料的形貌单独的Cu20半导体结构Figure1.TEManalysisofAuNRs:(a)TEM;(b)SAED;and(candd)I
53、IRTEMofselectedAuNRs.Figure1.Au(SCu2Ocore-shellNPu(a)TEM,(b)HAADF-STEM.(c)SAED,and(d)HRTEMofselectedAuCu2。coreshellNPs.Figure4.TEManalysisofCu2ONPs:(aandb)TEM;(c)SAED;and(d)HRTEMofselectedCu2ONJPs(inaet).00120180240300360420480540Time/min.co.COy-1000ppm-*Cu?ONPs(Cube)AuCu?ONPs(Sphere)oD5052a1.1.6(/9
54、0u9s_sea:Au具有化学和电子敏化的作用,首先Au具有催化作用,可以降低材料与待测气体反应的化学能;因为Au的功函数(5leV)大于Cu20(4.84eV),这样就会在Au/Cu2O的界而上形成较高的能带弯曲,会导致更多的电子与空穴分离,增加了空穴的迁移率,故Au离子的引入会促使电子空穴分离从而减少Cu2O的表面电阻100080060012001600(b)1400400nnn120180240300360420Time/min.Figure5.Responsetransientofaspreparedsensingdeviceatdifferenttemperatures:(a)250
55、Cand(b)50C.ReducedGrapheneOxideConjugatedCu2ONanowireMesocrystalsforHigh-PerformanceNOGasSensorSuziDeng/VerawatiTjaJ川HaiMingFanR*HuiRuTan/DznUSayk.MahiuOlo/SubodhMhaiMlkar,JunWeiJandCliomg,HaurSow,1DepartmemtofFhya.NitiiHuJUnireraty*afSingapore.2SaencrDrive3.Suigaporr11TS42SchoolqSUt-criaLsSuanszcan
56、dEngineering,NanyangT.thndapcJUnnustty,&39*793SuigapmcShaanxiKLeyLaborJtoiyofDepMUbkBtocnedicaLJiLiteriilx.SchoolofCbenuaiJEngineering.Narthw皀口Unnrcity.Xi*an.Slujnxi710069.ChinaInstituteofMaterialsReirchjndEmginwnng,AWSTAK(AgencytarScience,TechnologyandRctexrdi),3RctexrdiLxnJ:,117602.Singjipore*Dcpi
57、rtincntoHngi口ccnngmdAppliedScxncc.CranScldUmvcrs&ty.DcfcivaAcadcEnYoftheUnitedKingdom.ShnvcnlwnSN6SLA.UnieedKingdomSchoolciPhysea.Na;tiojuJUnirerAyofIreLtnxlCialway.Galway.IreLuidMJiinjaporcbistieuteafA-lxnufsetunngTechnolog;,63X07,SingjiporOiMpporrinXInjGrmatwnABSTRACT:Reducedpaphcncoxide(rtiOJwxaj
58、uj:atedCutOnonewiremecorryxtihformedbyntorwlanacalcryctaUiiationinthepresenceofGOandemkidaieunderhydrothemnalconditiDns.Therendtantmesocrystabatcemprsedofhhlyaniscotropieninouintsnxbuildm.gtiLodsjltuIpoarsxidwtinictoctahedralnmorphoLagywitheight111cquiYalentirrystalfuccs.Themrcharaixm*underlying;the
59、FoLkxws;&rsttG:Opronwjlrdagglomw-xtionaflmoqjihouspberiedCuOnaiwpirticleattheinitialstage,kdingtothetranatian.ofgrowthmxxJiAnBmfromcanraitBonaliombyrkmgroirthitoamorphouswherOrtuulciripennigisresponsiblefortkegrowthafthernesocryukandthereductMniofGO(athighSOArchittxtLircwhereporoiasth.Tcrdimensional
60、(3D)framworkrtructuicsinterspersedamongtwo-dirocnsionaL(2Dscqucnti*tonanoircnusgrptUkthroughEracsoscJctransfpnnabeA.nxnovnrebuildinj;bLodrs;third,large-scalejcrlf-OTganiiatwnoftheconcentration)occurdmuluneously.lecultinginuintegratedhybridD)rGOsheets.【口tcrrrtingliy,supcr-mcsocndlslonracdby3Doriented
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广州医科大学《汽车市场调查与预测》2023-2024学年第二学期期末试卷
- 吉林省柳河县重点中学2025届学业水平考试英语试题模拟卷(二)含答案
- 广东创新科技职业学院《数据采集与处理课程设计》2023-2024学年第二学期期末试卷
- 上海科学技术职业学院《离散数学(全英文)》2023-2024学年第一学期期末试卷
- 吉林科技职业技术学院《服务供应链管理》2023-2024学年第二学期期末试卷
- 上海市香山中学2025届学业水平考试物理试题模拟卷(八)含解析
- 山东艺术学院《园艺植物病理学》2023-2024学年第二学期期末试卷
- 2024年份2月钻探劳务分包多探头测井数据融合标准
- 安徽文达信息工程学院《美容中医学》2023-2024学年第二学期期末试卷
- 防灾科技学院《朝鲜语视听说二》2023-2024学年第一学期期末试卷
- 2025年4月自考15043中国近现代史纲要押题及答案
- 湖南省示范性高中2024-2025学年高二下学期2月联考 物理试卷(含解析)
- 2025年《宏观经济政策与发展规划》考前通关必练题库(含答案)
- 服装公司品质(质量)管理手册
- 江苏省淮安市洪泽区2024-2025学年七年级下学期3月调研地理试题(含答案)
- 办公楼弱电系统设计方案
- 黄金卷02(广州专用)-【赢在中考·黄金预测卷】2025年中考数学模拟卷(考试版)
- 2025-2030年班用帐篷项目投资价值分析报告
- 2025年国家粮食和物资储备局垂直管理系统事业单位招聘701人历年自考难、易点模拟试卷(共500题附带答案详解)
- 射线无损探伤合同范本
- 创意活动策划方案及执行流程
评论
0/150
提交评论