




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、求函数值域方法函数值域的求法(1)、直接法:从自变量的范围出发,推出的取值范围。或由函数的定义域结合图象,或直观观察,准确判断函数值域的方法。 例1:求函数的值域。 例2:求函数的值域。 例3:求函数的值域。(2)、配方法:配方法式求“二次函数类”值域的基本方法。形如的函数的值域问题,均可使用配方法。例1:求函数()的值域。(3)最值法:对于闭区间上的连续函数,利用函数的最大值、最小值求函数的值域的方法。 例1 求函数y=3-2x-x2 的值域。例2:求函数,的值域。 例3:求函数的值域。 (4)、反函数法:利用函数和它的反函数的定义域与值域的互逆关系,通过求反函数的定义域,得到原函数的值域。
2、例1:求函数的值域。(5)、分离常数法:分子、分母是一次函数得有理函数,可用分离常数法,此类问题一般也可以利用反函数法。小结:已知分式函数,如果在其自然定义域(代数式自身对变量的要求)内,值域为;如果是条件定义域(对自变量有附加条件),采用部分分式法将原函数化为,用复合函数法来求值域。例1:求函数的值域。(6)、换元法:运用代数代换,奖所给函数化成值域容易确定的另一函数,从而求得原函数的值域,形如(、均为常数,且)的函数常用此法求解。例1:求函数的值域。(7)、判别式法:把函数转化成关于的二次方程;通过方程有实数根,判别式,从而求得原函数的值域,形如(、不同时为零)的函数的值域,常用此方法求解
3、。例1:求函数的值域。(8)、函数的单调性法:确定函数在定义域(或某个定义域的子集)上的单调性,求出函数的值域。例1:求函数的值域。例2求函数在区间上的值域。构造相关函数,利用函数的单调性求值域。例3:求函数的值域。(9)、基本不等式法利用基本不等式和是求函数值域的常用技巧之一, 利用此法求函数的值域, 要合理地添项和拆项, 添项和拆项的原则是要使最终的乘积结果中不含自变量, 同时, 利用此法时应注意取成立的条件. 例1 求函数的值域. 例2 求函数的值域. 利用基本不等式,求函数的最值,其题型特征解析式是和式时要求积为定值,解析式是积时要求和为定值,不过有时需要用到拆项、添项和两边平方等技巧
4、。 例3. 求函数的值域。(10)、有界性法:利用某些函数有界性求得原函数的值域。例1:求函数的值域。例2求函数的值域例3:求函数的值域。 例4:求函数的值域。 (11)、数型结合法:函数图像是掌握函数的重要手段,利用数形结合的方法,根据函数图像求得函数值域,是一种求值域的重要方法。当函数解析式具有某种明显的几何意义(如两点间距离,直线的斜率、截距等)或当一个函数的图象易于作出时,借助几何图形的直观性可求出其值域。例1:求函数的值域。(12)、复合函数法:对函数,先求的值域充当的定义域,从而求出的值域的方法。例1、求函数 的值域(13)、非负数法根据函数解析式的结构特征,结合非负数的性质,可求
5、出相关函数的值域。例1、(1)求函数的值域。 (2)求函数的值域。(14)、导数法 若函数在内可导, 可以利用导数求得在内的极值, 然后再计算在,点的极限值. 从而求得的值域.例1: 求函数在内的值域.(15)、“平方开方法” 求函数值域的方法有很多种,如:“配方法”、“单调性法”、“换元法”、“判别式法”以及“平方开方法”等等.每一种方法都适用于求某一类具有共同特征的函数的值域.本文将指出适合采用“平方开方法”的函数有哪些共同的特征以及“平方开方法”的运算步骤,并给出四道典型的例题.1.适合采用“平方开方法”的函数特征设()是待求值域的函数,若它能采用“平方开方法”,则它通常具有如下三个特征:(1)的值总是非负,即对于任意的,恒成立;(2)具有两个函数加和的形式,即();(3)的平方可以写成一个常数与一个新函数加和的形式,即(,为常数),其中,新函数()的值域比较容易求得.2.“平方开方法”的运算步骤 若函数()具备了上述的三个特征,则可以将先平方、再开方,从而得到(,为常数).然后,利用的值域便可轻易地求出的值域.例如,则显然.3.应用“平方开方法”四例能够应用“平方开方法”求值域的函数不胜枚举,这里仅以其中四道典型的例题来演示此法在解决具体问题时的技巧. (16). 一一映射法原
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45361-2025轻工机械挤出平模头技术条件
- 固体废物处理与管理
- 鲁甸县2025年一级建造师市政工程高分冲刺试题含解析
- 学生社团工作方案计划
- 如何进行有效的时间分配计划
- 长期发展战略计划
- 管理层与生产团队的沟通计划
- 营造积极向上的校园文化计划
- 创新思维培养在课堂中的实践计划
- 加强幼儿社交能力培养的教研计划
- 四年级劳动练习试题及答案
- 2024年中国物流招聘笔试参考题库附带答案详解
- 2024年中国饰品行业发展状况与消费行为洞察报告-艾媒咨询
- 余华小说第七天阅读分享
- 3.28百万农奴解放纪念日演讲稿1500字2篇
- 图论与网络流
- 火针疗法课件
- 低代码培训课件
- 法院系统组成和职责解析
- 访谈记录表模板
- 油库消防安全知识培训
评论
0/150
提交评论