2022届海南省海口市长流中考适应性考试数学试题含解析_第1页
2022届海南省海口市长流中考适应性考试数学试题含解析_第2页
2022届海南省海口市长流中考适应性考试数学试题含解析_第3页
2022届海南省海口市长流中考适应性考试数学试题含解析_第4页
2022届海南省海口市长流中考适应性考试数学试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(共10小题,每小题3分,共30分)1 “保护水资源,节约用水”应成为每个公民的自觉行为下表是某个小区随机抽查到的10户家庭的月用水情况,则下列关于这10户家庭的月用水量说法错误的是()月用水量(吨)4569

2、户数(户)3421A中位数是5吨B众数是5吨C极差是3吨D平均数是5.3吨2方程(m2)x2+3mx+1=0是关于x的一元二次方程,则( )Am2Bm=2Cm=2Dm23函数y=1-x的自变量x的取值范围是( )Ax1Bx0,即得m的取值范围.【详解】因为方程是关于x的一元二次方程方程,所以可得,4+4m 0,解得m1,故选D.【点睛】本题熟练掌握一元二次方程的基本概念是本题的解题关键.5、D【解析】分析:根据从左边看得到的图形是左视图,可得答案详解:从左边看是等长的上下两个矩形,上边的矩形小,下边的矩形大,两矩形的公共边是虚线,故选D点睛:本题考查了简单组合体的三视图,从左边看得到的图形是左

3、视图6、B【解析】同级运算从左向右依次计算,计算过程中注意正负符号的变化【详解】 -故选B.【点睛】本题考查的是有理数的混合运算,熟练掌握运算法则是解题的关键.7、D【解析】根据题意列出关系式,去括号合并即可得到结果【详解】解:设小长方形卡片的长为x,宽为y,根据题意得:x+2y=a,则图中两块阴影部分周长和是:2a+2(b-2y)+2(b-x)=2a+4b-4y-2x=2a+4b-2(x+2y)=2a+4b-2a=4b故选择:D.【点睛】此题考查了整式的加减,熟练掌握运算法则是解本题的关键8、C【解析】连接OC,如图所示,由直径AB垂直于CD,利用垂径定理得到E为CD的中点,即CE=DE,由

4、OA=OC,利用等边对等角得到一对角相等,确定出三角形COE为等腰直角三角形,求出OC的长,即为圆的半径【详解】解:连接OC,如图所示:AB是O的直径,弦CDAB, OA=OC,A=OCA=22.5,COE为AOC的外角,COE=45,COE为等腰直角三角形, 故选:C【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及圆周角定理,熟练掌握垂径定理是解本题的关键9、A【解析】根据垂直的定义得到BCE=90,根据平行线的性质求出BCD=55,计算即可【详解】解:BCAE,BCE=90,CDAB,B=55,BCD=B=55,1=90-55=35,故选:A【点睛】本题考查的是平行线的性质和垂直的定

5、义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等10、C【解析】由极差、众数、中位数、平均数的定义对四个选项一一判断即可.【详解】A.极差为51.5=3.5,此选项正确;B.1.5个数最多,为2个,众数是1.5,此选项正确;C.将式子由小到大排列为:1.5,1.5,2,2.5,3,4,4.5,5,中位数为(2.5+3)=2.75,此选项错误;D.平均数为:(1.5+1.5+2+2.5+3+4+4.5+5)=3,此选项正确.故选C.【点睛】本题主要考查平均数、众数、中位数、极差的概念,其中在求中位数的时候一定要将给出的数据按从大到小或者从小到大的顺序排列起来再进行求解

6、.二、填空题(本大题共6个小题,每小题3分,共18分)11、4【解析】根据规定,取的整数部分即可.【详解】,整数部分为4.【点睛】本题考查无理数的估值,熟记方法是关键.12、1【解析】根据根与系数的关系得出b2-4ac=(-2)2-41(n-1)=-4n+80,求出n2,再去绝对值符号,即可得出答案【详解】解:关于x的方程x22x+n=1没有实数根,b2-4ac=(-2)2-41(n-1)=-4n+80,n2,|2n |-1-n=n-2-n+1=-1.故答案为-1.【点睛】本题考查了根的判别式,解题的关键是根据根与系数的关系求出n的取值范围再去绝对值求解即可.13、1【解析】点P(m,2)与点

7、Q(3,n)关于原点对称,m=3,n=2,则(m+n)2018=(3+2)2018=1,故答案为114、【解析】原式提取公因式,再利用完全平方公式分解即可【详解】原式2x(y22y1)2x(y1)2,故答案为2x(y1)2【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键15、1【解析】根据平移规律“左加右减,上加下减”填空.【详解】解:将抛物线y=(x+m)1向右平移1个单位后,得到抛物线解析式为y=(x+m-1)1其对称轴为:x=1-m=0,解得m=1故答案是:1.【点睛】主要考查的是函数图象的平移,用平移规律“左加右减,上加下减”直接代入函数解析式求得平

8、移后的函数解析式.16、【解析】考点:弧长的计算;正多边形和圆分析:本题主要考查求正多边形的每一个内角,以及弧长计算公式解:方法一:先求出正六边形的每一个内角=120,所得到的三条弧的长度之和=3=2cm;方法二:先求出正六边形的每一个外角为60,得正六边形的每一个内角120,每条弧的度数为120,三条弧可拼成一整圆,其三条弧的长度之和为2cm三、解答题(共8题,共72分)17、电视塔高为米,点的铅直高度为(米)【解析】过点P作PFOC,垂足为F,在RtOAC中利用三角函数求出OC=100,根据山坡坡度1:2表示出PBx, AB2x, 在RtPCF中利用三角函数即可求解.【详解】过点P作PFO

9、C,垂足为F在RtOAC中,由OAC60,OA100,得OCOAtanOAC100(米),过点P作PBOA,垂足为B由i1:2,设PBx,则AB2xPFOB100+2x,CF100 x在RtPCF中,由CPF45,PFCF,即100+2x100 x,x ,即PB米【点睛】本题考查了特殊的直角三角形,三角函数的实际应用,中等难度,作出辅助线构造直角三角形并熟练应用三角函数是解题关键.18、(1)见解析;(2)2.【解析】证明:(1)连接OD,AB是直径,ADB=90,即ADBC,AB=AC,AD平分BAC,OAD=CAD,OA=OD,OAD=ODA,ODA=CAD,ODAC,DEAC,ODEF,

10、OD过O,EF是O的切线(2)ODDF,ODF=90,F=30,OF=2OD,即OB+3=2OD,而OB=OD,OD=3,AOD=90+F=90+30=120,的长度=.【点睛】本题考查了切线的判定和性质:圆的切线垂直于经过切点的半径运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题也考查了弧长公式19、(1)等腰(2)(3)存在, 【解析】解:(1)等腰 (2)抛物线的“抛物线三角形”是等腰直角三角形, 该抛物线的顶点满足 (3)存在 如图,作与关于原点中心对称, 则四边形为平行四边形 当时,平行四边形为矩形 又, 为等边三角形 作,垂足为 ,

11、, 设过点三点的抛物线,则 解之,得 所求抛物线的表达式为20、(1)购进型台灯盏,型台灯25盏;(2)当商场购进型台灯盏时,商场获利最大,此时获利为元【解析】试题分析:(1)设商场应购进A型台灯x盏,然后根据关系:商场预计进货款为3500元,列方程可解决问题;(2)设商场销售完这批台灯可获利y元,然后求出y与x的函数关系式,然后根据一次函数的性质和自变量的取值范围可确定获利最多时的方案试题解析:解:(1)设商场应购进A型台灯x盏,则B型台灯为(100 x)盏,根据题意得,30 x+50(100 x)=3500,解得x=75,所以,10075=25,答:应购进A型台灯75盏,B型台灯25盏;(

12、2)设商场销售完这批台灯可获利y元,则y=(4530)x+(7050)(100 x),=15x+200020 x,=5x+2000,B型台灯的进货数量不超过A型台灯数量的3倍,100 x3x,x25,k=50,x=25时,y取得最大值,为525+2000=1875(元)答:商场购进A型台灯25盏,B型台灯75盏,销售完这批台灯时获利最多,此时利润为1875元考点:1一元一次方程的应用;2一次函数的应用21、(1)120;(2)作图见解析;证明见解析;(3)3 .【解析】【分析】(1)根据等边三角形的性质,可知ACB=60,在BCP中,利用三角形内角和定理即可得;(2)根据题意补全图形即可;证明

13、ACDBCP,根据全等三角形的对应边相等可得AD=BP,从而可得AD+CD=BP+PD=BD;(3)如图2,作BMAD于点M,BNDC延长线于点N,根据已知可推导得出BM=BN=32BD=3,由(2)得,AD+CD=BD=2,根据S四边形ABCD=SABD+SBCD 即可求得.【详解】(1)三角形ABC是等边三角形,ACB=60,即ACP+BCP=60,BCP+CBP+BPC=180,ACP=CBP,BPC=120,故答案为120;(2)如图1所示.在等边ABC中,ACB=60,ACP+BCP=60,ACP=CBP,CBP+BCP=60,BPC=180-CBP+BCP=120,CPD=180-

14、BPC=60,PD=PC,CDP为等边三角形,ACD+ACP=ACP+BCP=60,ACD=BCP,在ACD和BCP中,AC=BCACD=BCPCD=CP,ACDBCPSAS ,AD=BP,AD+CD=BP+PD=BD;(3)如图2,作BMAD于点M,BNDC延长线于点N,ADB=ADC-PDC=60,ADB=CDB=60,ADB=CDB=60,BM=BN=32BD=3,又由(2)得,AD+CD=BD=2,S四边形ABCD=SABD+SBCD =12ADBM+12CDBN =32AD+CD=322 =3.【点睛】本题考查了等边三角形的性质、全等三角形的判定与性质等,熟练掌握相关性质定理、正确添

15、加辅助线是解题的关键.22、(1)点C的坐标为(3,9);滑动的距离为6(1)cm;(2)OC最大值1cm.【解析】试题分析:(1)过点C作y轴的垂线,垂足为D,根据30的直角三角形的性质解答即可;设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,根据锐角三角函数和勾股定理解答即可;(2)设点C的坐标为(x,y),过C作CEx轴,CDy轴,垂足分别为E,D,证得ACEBCD,利用相似三角形的性质解答即可试题解析:解:(1)过点C作y轴的垂线,垂足为D,如图1:在RtAOB中,AB=1,OB=6,则BC=6,BAO=30,ABO=60,又CBA=60,CBD=60,BCD=30,BD

16、=3,CD=3,所以点C的坐标为(3,9);设点A向右滑动的距离为x,根据题意得点B向上滑动的距离也为x,如图2:AO=1cosBAO=1cos30=6AO=6x,BO=6+x,AB=AB=1在AO B中,由勾股定理得,(6x)2+(6+x)2=12,解得:x=6(1),滑动的距离为6(1);(2)设点C的坐标为(x,y),过C作CEx轴,CDy轴,垂足分别为E,D,如图3:则OE=x,OD=y,ACE+BCE=90,DCB+BCE=90,ACE=DCB,又AEC=BDC=90,ACEBCD,即,y=x,OC2=x2+y2=x2+(x)2=4x2,当|x|取最大值时,即C到y轴距离最大时,OC

17、2有最大值,即OC取最大值,如图,即当CB旋转到与y轴垂直时此时OC=1,故答案为1考点:相似三角形综合题23、9【解析】根据完全平方公式、平方差公式、单项式乘多项式可以化简题目中的式子,然后将x、y的值代入化简后的式子即可解答本题【详解】 当,时,原式 【点睛】本题考查整式的化简求值,解答本题的关键是明确整式化简求值的方法24、(1)yx2+x+2(x)2+,顶点坐标为(,);(2)存在,点M(,0)理由见解析【解析】(1)由根与系数的关系,结合已知条件可得9+4m17,解方程求得m的值,即可得求得二次函数的解析式,再求得该二次函数图象的顶点的坐标即可;(2)存在,将抛物线表达式和一次函数yx+2联立并解得x0或,即可得点A、B的坐标为(0,2)、(,),由此求得PB=, AP=2,过点B作BMAB交x轴于点M,证得APOMPB,根据相似三角形的性质可得 ,代入数据即可求得MP,再求得OM,即可得点M的坐标为(,0)【详解】(1)由题意得:x1+x23,x1x22m,x12+x22(x1+x2)22x1x217,即:9+4m17,解得:m2,抛物线的表达式为:yx2+x+2(x)2+,顶点坐标为(,);(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论