2022年浙江省嘉兴市中考联考数学试题含解析及点睛_第1页
2022年浙江省嘉兴市中考联考数学试题含解析及点睛_第2页
2022年浙江省嘉兴市中考联考数学试题含解析及点睛_第3页
2022年浙江省嘉兴市中考联考数学试题含解析及点睛_第4页
2022年浙江省嘉兴市中考联考数学试题含解析及点睛_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1若代数式有意义,则实数x的取值范围是( )Ax0Bx2Cx0Dx22如图,下列各数中,数轴上点A表示的可能是( )A4的算术平方根B4的立方根C8的算术平方根D8的立方根3四个有理数1,2,0,3,其中最小的是( )A1 B2 C0 D34在某校“我的中国梦”演讲比赛中,有9名学生参

2、加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A众数B方差C平均数D中位数5下列计算正确的是()Aa6a2=a3B(2)1=2C(3x2)2x3=6x6D(3)0=16下列分式中,最简分式是( )ABCD7解分式方程3=时,去分母可得()A13(x2)=4B13(x2)=4C13(2x)=4D13(2x)=48习近平主席在2018年新年贺词中指出,2017年,基本医疗保险已经覆盖1350000000人将1350000000用科学记数法表示为()A135107B1.35109C13.5108D1.3510149的

3、相反数是()AB-CD10三角形的两边长分别为3和6,第三边的长是方程x26x+80的一个根,则这个三角形的周长是()A9B11C13D11或13二、填空题(共7小题,每小题3分,满分21分)11如图,正ABC 的边长为 2,顶点 B、C 在半径为 的圆上,顶点 A在圆内,将正ABC 绕点 B 逆时针旋转,当点 A 第一次落在圆上时,则点 C 运动的路线长为 (结果保留);若 A 点落在圆上记做第 1 次旋转,将ABC 绕点 A 逆时针旋转,当点 C 第一次落在圆上记做第 2 次旋转,再绕 C 将ABC 逆时针旋转,当点 B 第一次落在圆上,记做第 3 次旋转,若此旋转下去,当ABC 完成第

4、2017 次旋转时,BC 边共回到原来位置 次12在2018年帮助居民累计节约用水305000吨,将数字305000用科学记数法表示为_13把一张长方形纸条按如图所示折叠后,若AOB70,则BOG_14如图,在RtABC中,ACB=90,D、E、F分别是AB、BC、CA的中点,若CD=3cm,则EF=_cm15如图,O的半径为5cm,圆心O到AB的距离为3cm,则弦AB长为_ cm16若关于x的一元二次方程x2+mx+2n0有一个根是2,则m+n_17的相反数是_,的倒数是_三、解答题(共7小题,满分69分)18(10分)(1)观察猜想如图点B、A、C在同一条直线上,DBBC,ECBC且DAE

5、=90,AD=AE,则BC、BD、CE之间的数量关系为_;(2)问题解决如图,在RtABC中,ABC=90,CB=4,AB=2,以AC为直角边向外作等腰RtDAC,连结BD,求BD的长;(3)拓展延伸如图,在四边形ABCD中,ABC=ADC=90,CB=4,AB=2,DC=DA,请直接写出BD的长19(5分)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示平均分(分)中位数(分)众数(分)方差(分2)初中部a85bs初中2高中部85c100160(1)根据图示计算出a、b、c的值;结合两

6、队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定20(8分)已知:如图所示,在中,求和的度数.21(10分)如图,AB为O的直径,直线BMAB于点B,点C在O上,分别连接BC,AC,且AC的延长线交BM于点D,CF为O的切线交BM于点F(1)求证:CFDF;(2)连接OF,若AB10,BC6,求线段OF的长22(10分)某跳水队为了解运动员的年龄情况,作了一次年龄调查,根据跳水运动员的年龄(单位:岁),绘制出如下的统计图和图请根据相关信息,解答下列问题:本次接受调查的跳水运动员人数为 ,图中m的值为 ;求统计的这组跳

7、水运动员年龄数据的平均数、众数和中位数23(12分)如图在由边长为1个单位长度的小正方形组成的1212网格中,已知点A,B,C,D均为网格线的交点在网格中将ABC绕点D顺时针旋转90画出旋转后的图形A1B1C1;在网格中将ABC放大2倍得到DEF,使A与D为对应点24(14分)如图,在平面直角坐标系中,反比例函数的图像与边长是6的正方形的两边,分别相交于,两点.若点是边的中点,求反比例函数的解析式和点的坐标;若,求直线的解析式及的面积参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【解析】根据分式的分母不等于0即可解题.【详解】解:代数式有意义,x-20,即x2,故选

8、D.【点睛】本题考查了分式有意义的条件,属于简单题,熟悉分式有意义的条件是解题关键.2、C【解析】解:由题意可知4的算术平方根是2,4的立方根是 2, 8的算术平方根是, 23,8的立方根是2,故根据数轴可知,故选C3、D【解析】解:1102,最小的是1故选D4、D【解析】根据中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)的意义,9人成绩的中位数是第5名的成绩参赛选手要想知道自己是否能进入前5名,只需要了解自己的成绩以及全部成绩的中位数,比较即可【详解】由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多

9、少.故本题选:D.【点睛】本题考查了统计量的选择,熟练掌握众数,方差,平均数,中位数的概念是解题的关键.5、D【解析】解:Aa6a2=a4,故A错误;B(2)1=,故B错误;C(3x2)2x3=6x5,故C错;D(3)0=1,故D正确故选D6、A【解析】试题分析:选项A为最简分式;选项B化简可得原式=;选项C化简可得原式=;选项D化简可得原式=,故答案选A.考点:最简分式.7、B【解析】方程两边同时乘以(x-2),转化为整式方程,由此即可作出判断【详解】方程两边同时乘以(x-2),得13(x2)=4,故选B【点睛】本题考查了解分式方程,利用了转化的思想,熟练掌握解分式方程的一般步骤以及注意事项

10、是解题的关键.8、B【解析】科学记数法的表示形式为a的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值1时,n是正数;当原数的绝对值1时,n是负数.【详解】将1350000000用科学记数法表示为:1350000000=1.35109,故选B【点睛】本题考查科学记数法的表示方法. 科学记数法的表示形式为a的形式,其中1|a|10,n为整数,表示时关键要正确确定a的值及n的值.9、C【解析】根据只有符号不同的两个数互为相反数进行解答即可.【详解】与只有符号不同,所以的相反数是,故选C【点睛】本题考查了相反数的定义,

11、熟练掌握相反数的定义是解题的关键.10、C【解析】试题分析:先求出方程x26x80的解,再根据三角形的三边关系求解即可.解方程x26x80得x=2或x=4当x=2时,三边长为2、3、6,而2+36,此时无法构成三角形当x=4时,三边长为4、3、6,此时可以构成三角形,周长=4+3+6=13故选C.考点:解一元二次方程,三角形的三边关系点评:解题的关键是熟记三角形的三边关系:任两边之和大于第三边,任两边之差小于第三边.二、填空题(共7小题,每小题3分,满分21分)11、,1.【解析】首先连接OA、OB、OC,再求出CBC的大小,进而利用弧长公式问题即可解决因为ABC是三边在正方形CBAC上,BC

12、边每12次回到原来位置,201712=1.08,推出当ABC完成第2017次旋转时,BC边共回到原来位置1次.【详解】如图,连接OA、OB、OCOB=OC=,BC=2, OBC是等腰直角三角形,OBC=45;同理可证:OBA=45,ABC=90;ABC=60,ABA=90-60=30,CBC=ABA=30,当点A第一次落在圆上时,则点C运动的路线长为:ABC是三边在正方形CBAC上,BC边每12次回到原来位置,201712=1.08,当ABC完成第2017次旋转时,BC边共回到原来位置1次,故答案为:,1【点睛】本题考查轨迹、等边三角形的性质、旋转变换、规律问题等知识,解题的关键是循环利用数形

13、结合的思想解决问题,循环从特殊到一般的探究方法,所以中考填空题中的压轴题12、3.05105【解析】科学记数法的表示形式为a10n的形式,其中1|a|10时,n是正数;当原数的绝对值1时,n是负数【详解】305000=3.05105故答案为:3.05105.【点睛】本题考查的知识点是科学记数法表示较大的数,解题关键是熟记科学计数法的表示方法.13、55【解析】由翻折性质得,BOGBOG,根据邻补角定义可得.【详解】解:由翻折性质得,BOGBOG,AOB+BOG+BOG180,BOG(180AOB)(18070)55故答案为55【点睛】考核知识点:补角,折叠.14、3【解析】试题分析:根据点D为

14、AB的中点可得:CD为直角三角形斜边上的中线,根据直角三角形斜边上的中线等于斜边的一半可得AB=2CD=6,根据E、F分别为中点可得:EF为ABC的中位线,根据中位线的性质可得:EF=AB=3.考点:(1)、直角三角形的性质;(2)、中位线的性质15、1cm【解析】首先根据题意画出图形,然后连接OA,根据垂径定理得到OC平分AB,即AC=BC,而在RtOAC中,根据勾股数得到AC=4,这样即可得到AB的长【详解】解:如图,连接OA,则OA=5,OC=3,OCAB,AC=BC,在RtOAC中,AC=4,AB=2AC=1故答案为1 【点睛】本题考查垂径定理;勾股定理16、1【解析】根据一元二次方程

15、的解的定义把x1代入x1mx1n0得到41m1n0得nm1,然后利用整体代入的方法进行计算【详解】1(n0)是关于x的一元二次方程x1mx1n0的一个根,41m1n0,nm1,故答案为1【点睛】本题考查了一元二次方程的解(根):能使一元二次方程左右两边相等的未知数的值是一元二次方程的解又因为只含有一个未知数的方程的解也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根17、2,【解析】试题分析:根据相反数和倒数的定义分别进行求解,2的相反数是2,2的倒数是.考点:倒数;相反数三、解答题(共7小题,满分69分)18、(1)BC=BD+CE,(2);(3). 【解析】(1)证明ADBE

16、AC,根据全等三角形的性质得到BD=AC,EC=AB,即可得到BC、BD、CE之间的数量关系;(2)过D作DEAB,交BA的延长线于E,证明ABCDEA,得到DE=AB=2,AE=BC=4,RtBDE中,BE=6,根据勾股定理即可得到BD的长;(3)过D作DEBC于E,作DFAB于F,证明CEDAFD,根据全等三角形的性质得到CE=AF,ED=DF,设AF=x,DF=y,根据CB=4,AB=2,列出方程组,求出的值,根据勾股定理即可求出BD的长.【详解】解:(1)观察猜想结论: BC=BD+CE,理由是:如图,B=90,DAE=90,D+DAB=DAB+EAC=90,D=EAC,B=C=90,

17、AD=AE,ADBEAC,BD=AC,EC=AB,BC=AB+AC=BD+CE;(2)问题解决如图,过D作DEAB,交BA的延长线于E,由(1)同理得:ABCDEA,DE=AB=2,AE=BC=4,RtBDE中,BE=6,由勾股定理得: (3)拓展延伸如图,过D作DEBC于E,作DFAB于F,同理得:CEDAFD,CE=AF,ED=DF,设AF=x,DF=y,则,解得: BF=2+1=3,DF=3,由勾股定理得: 【点睛】考查全等三角形的判定与性质,勾股定理,二元一次方程组的应用,熟练掌握全等三角形的判定与性质是解题的关键.19、(1)85,85,80; (2)初中部决赛成绩较好;(3)初中代

18、表队选手成绩比较稳定【解析】分析:(1)根据成绩表,结合平均数、众数、中位数的计算方法进行解答;(2)比较初中部、高中部的平均数和中位数,结合比较结果得出结论;(3)利用方差的计算公式,求出初中部的方差,结合方差的意义判断哪个代表队选手的成绩较为稳定.【详解】详解: (1)初中5名选手的平均分,众数b=85,高中5名选手的成绩是:70,75,80,100,100,故中位数c=80;(2)由表格可知初中部与高中部的平均分相同,初中部的中位数高,故初中部决赛成绩较好;(3)=70,初中代表队选手成绩比较稳定【点睛】本题是一道有关条形统计图、平均数、众数、中位数、方差的统计类题目,掌握平均数、众数、

19、中位数、方差的概念及计算方法是解题的关键.20、,.【解析】根据等腰三角形的性质即可求出B,再根据三角形外角定理即可求出C.【详解】在中,在三角形中,又,在三角形中,.【点睛】此题主要考查等腰三角形的性质,解题的关键是熟知等边对等角.21、(1)详见解析;(2)OF【解析】(1)连接OC,如图,根据切线的性质得1+3=90,则可证明3=4,再根据圆周角定理得到ACB=90,然后根据等角的余角相等得到BDC=5,从而根据等腰三角形的判定定理得到结论;(2)根据勾股定理计算出AC=8,再证明ABCABD,利用相似比得到AD=,然后证明OF为ABD的中位线,从而根据三角形中位线性质求出OF的长【详解

20、】(1)证明:连接OC,如图,CF为切线,OCCF,1+390,BMAB,2+490,OCOB,12,34,AB为直径,ACB90,3+590,4+BDC90,BDC5,CFDF;(2)在RtABC中,AC8,BACDAB,ABCABD,即,AD,34,FCFB,而FCFD,FDFB,而BOAO,OF为ABD的中位线,OFAD【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系也考查了圆周角定理和垂径定理22、(1)40人;1;(2)平均数是15;众数16;中位数15.【解析】(1)用13岁年龄的人数除以13岁年龄的人数所占的百分比,即可得本次接受调查的跳水运动员人数;用16岁年龄的人数除以本次接受调查的跳水运动员人数即可求得m的值;(2)根据统计图中给出的信息,结合求平均数、众数、中位数的方法求解即可.【详解】解:(1)410%=40(人),m=100-27.5-25-7.5-1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论