安徽宣城古泉2021-2022学年中考数学对点突破模拟试卷含解析及点睛_第1页
安徽宣城古泉2021-2022学年中考数学对点突破模拟试卷含解析及点睛_第2页
安徽宣城古泉2021-2022学年中考数学对点突破模拟试卷含解析及点睛_第3页
安徽宣城古泉2021-2022学年中考数学对点突破模拟试卷含解析及点睛_第4页
安徽宣城古泉2021-2022学年中考数学对点突破模拟试卷含解析及点睛_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1如图,ABC在平面直角坐标系中第二象限内,顶点A的坐标是(2,3),先把ABC向右平移6个单位得到A1B1C1,再作A1B1C1关于x轴对称图形A2B2C2,则顶点A2的坐标是()A(4,3)B(4,3)C(5,3)D(3,4

2、)2不等式组的解集在数轴上表示为()ABCD3某中学篮球队12名队员的年龄如下表:年龄:(岁)13141516人数1542关于这12名队员的年龄,下列说法错误的是( )A众数是14岁B极差是3岁C中位数是14.5岁D平均数是14.8岁4据史料记载,雎水太平桥建于清嘉庆年间,已有200余年历史桥身为一巨型单孔圆弧,既没有用钢筋,也没有用水泥,全部由石块砌成,犹如一道彩虹横卧河面上,桥拱半径OC为13m,河面宽AB为24m,则桥高CD为( )A15mB17mC18mD20m5如图,直角边长为的等腰直角三角形与边长为3的等边三角形在同一水平线上,等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,设

3、穿过时间为t,两图形重合部分的面积为S,则S关于t的图象大致为( )ABCD6如果一次函数y=kx+b(k、b是常数,k0)的图象经过第一、二、四象限,那么k、b应满足的条件是( )Ak0,且b0Bk0,且b0Ck0,且b0Dk0,且b07若代数式有意义,则实数x的取值范围是( )Ax1Bx0Cx0Dx0且x18在0.3,3,0,这四个数中,最大的是()A0.3B3C0D9将二次函数的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )ABCD10将(x+3)2(x1)2分解因式的结果是()A4(2x+2)B8x+8C8(x+1)D 4(x+1)二、填空题(共7小题,每

4、小题3分,满分21分)11如图所示,矩形ABCD的顶点D在反比例函数(x0)的图象上,顶点B,C在x轴上,对角线AC的延长线交y轴于点E,连接BE,BCE的面积是6,则k=_12下列说法正确的是_(请直接填写序号)“若ab,则”是真命题六边形的内角和是其外角和的2倍函数y= 的自变量的取值范围是x1三角形的中位线平行于第三边,并且等于第三边的一半正方形既是轴对称图形,又是中心对称图形13如图,经过点B(2,0)的直线与直线相交于点A(1,2),则不等式的解集为 14抛物线 y3x26x+a 与 x 轴只有一个公共点,则 a 的值为_15一个不透明的口袋中有2个红球,1个黄球,1个白球,每个球除

5、颜色不同外其余均相同小溪同学从口袋中随机取出两个小球,则小溪同学取出的是一个红球、一个白球的概率为_16已知一个圆锥体的底面半径为2,母线长为4,则它的侧面展开图面积是_(结果保留)17已知二次函数yax2+bx+c中,函数y与自变量x的部分对应值如表所示:x54321y83010当y3时,x的取值范围是_三、解答题(共7小题,满分69分)18(10分)如图所示,一艘轮船位于灯塔P的北偏东方向与灯塔的距离为80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南偏东方向上的B处.求此时轮船所在的B处与灯塔的距离.(结果保留根号)19(5分)如图,AC是O的直径,点P在线段AC的延长线上,

6、且PC=CO,点B在O上,且CAB=30(1)求证:PB是O的切线;(2)若D为圆O上任一动点,O的半径为5cm时,当弧CD长为 时,四边形ADPB为菱形,当弧CD长为 时,四边形ADCB为矩形20(8分)如图1,ABC中,AB=AC=6,BC=4,点D、E分别在边AB、AC上,且AD=AE=1,连接DE、CD,点M、N、P分别是线段DE、BC、CD的中点,连接MP、PN、MN(1)求证:PMN是等腰三角形;(2)将ADE绕点A逆时针旋转,如图2,当点D、E分别在边AC两侧时,求证:PMN是等腰三角形;当ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,请直接写出此时BD的长21(10

7、分)实践体验:(1)如图1:四边形ABCD是矩形,试在AD边上找一点P,使BCP为等腰三角形;(2)如图2:矩形ABCD中,AB=13,AD=12,点E在AB边上,BE=3,点P是矩形ABCD内或边上一点,且PE=5,点Q是CD边上一点,求PQ得最值;问题解决:(3)如图3,四边形ABCD中,ADBC,C=90,AD=3,BC=6,DC=4,点E在AB边上,BE=2,点P是四边形ABCD内或边上一点,且PE=2,求四边形PADC面积的最值22(10分)如图,在四边形ABCD中,BAC=ACD=90,B=D(1)求证:四边形ABCD是平行四边形;(2)若AB=3cm,BC=5cm,AE=AB,点

8、P从B点出发,以1cm/s的速度沿BCCDDA运动至A点停止,则从运动开始经过多少时间,BEP为等腰三角形.23(12分)先化简,再求值:(1),其中x=124(14分)如图,四边形ABCD的四个顶点分别在反比例函数与(x0,0mn)的图象上,对角线BD/y轴,且BDAC于点P已知点B的横坐标为1当m=1,n=20时若点P的纵坐标为2,求直线AB的函数表达式若点P是BD的中点,试判断四边形ABCD的形状,并说明理由四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、A【解析】直接利用平移的性质

9、结合轴对称变换得出对应点位置【详解】如图所示:顶点A2的坐标是(4,-3)故选A【点睛】此题主要考查了轴对称变换和平移变换,正确得出对应点位置是解题关键2、A【解析】根据不等式组的解集在数轴上表示的方法即可解答.【详解】x2,故以2为实心端点向右画,x1,故以1为空心端点向左画故选A【点睛】本题考查了不等式组解集的在数轴上的表示方法,不等式的解集在数轴上表示方法为:、向右画,、向左画, “”、“”要用实心圆点表示;“”要用空心圆点表示.3、D【解析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;极差是:1613

10、=3,故选项B正确,不合题意;中位数是:14.5,故选项C正确,不合题意;平均数是:(13+145+154+162)1214.5,故选项D错误,符合题意故选D“点睛”此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键4、C【解析】连结OA,如图所示: CDAB,AD=BD=AB=12m.在RtOAD中,OA=13,OD=,所以CD=OC+OD=13+5=18m.故选C.5、B【解析】先根据等腰直角三角形斜边为2,而等边三角形的边长为3,可得等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,进而得到S关于t的图象的中间

11、部分为水平的线段,再根据当t=0时,S=0,即可得到正确图象【详解】根据题意可得,等腰直角三角形斜边为2,斜边上的高为1,而等边三角形的边长为3,高为,故等腰直角三角形沿水平线从左向右匀速穿过等边三角形时,出现等腰直角三角形完全处于等边三角形内部的情况,故两图形重合部分的面积先增大,然后不变,再减小,S关于t的图象的中间部分为水平的线段,故A,D选项错误;当t0时,S0,故C选项错误,B选项正确;故选:B【点睛】本题考查了动点问题的函数图像,根据重复部分面积的变化是解题的关键6、B【解析】试题分析:一次函数y=kx+b(k、b是常数,k0)的图象经过第一、二、四象限,k0,b0,故选B考点:一

12、次函数的性质和图象7、D【解析】试题分析:代数式有意义,解得x0且x1故选D考点:二次根式,分式有意义的条件8、A【解析】根据正数大于0,0大于负数,正数大于负数,比较即可【详解】-3-00.3最大为0.3故选A【点睛】本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型9、B【解析】抛物线平移不改变a的值,由抛物线的顶点坐标即可得出结果【详解】解:原抛物线的顶点为(0,0),向左平移1个单位,再向下平移1个单位,那么新抛物线的顶点为(-1,-1),可设新抛物线的解析式为:y=(x-h)1+k,代入得:y=(x+1)1-1所得图象的解析式为:y=(x

13、+1)1-1;故选:B【点睛】本题考查二次函数图象的平移规律;解决本题的关键是得到新抛物线的顶点坐标10、C【解析】直接利用平方差公式分解因式即可【详解】(x3)2(x1)2(x3)(x1)(x3)(x1)4(2x2)8(x1)故选C【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键二、填空题(共7小题,每小题3分,满分21分)11、-1【解析】先设D(a,b),得出CO=-a,CD=AB=b,k=ab,再根据BCE的面积是6,得出BCOE=1,最后根据ABOE,得出,即BCEO=ABCO,求得ab的值即可【详解】设D(a,b),则CO=-a,CD=AB=b,矩形ABCD的顶点

14、D在反比例函数y=(x0)的图象上,k=ab,BCE的面积是6,BCOE=6,即BCOE=1,ABOE,即BCEO=ABCO,1=b(-a),即ab=-1,k=-1,故答案为-1【点睛】本题主要考查了反比例函数系数k的几何意义,矩形的性质以及平行线分线段成比例定理的综合应用,能很好地考核学生分析问题,解决问题的能力解题的关键是将BCE的面积与点D的坐标联系在一起,体现了数形结合的思想方法12、【解析】根据不等式的性质可确定的对错,根据多边形的内外角和可确定的对错,根据函数自变量的取值范围可确定的对错,根据三角形中位线的性质可确定的对错,根据正方形的性质可确定的对错.【详解】“若ab,当c0时,

15、则,故是假命题;六边形的内角和是其外角和的2倍,根据真命题;函数y=的自变量的取值范围是x1且x0,故是假命题;三角形的中位线平行于第三边,并且等于第三边的一半,故是真命题;正方形既是轴对称图形,又是中心对称图形,故是真命题;故答案为【点睛】本题考查了不等式的性质、多边形的内外角和、函数自变量的取值范围、三角形中位线的性质、正方形的性质,解答本题的关键是熟练掌握各知识点.13、【解析】分析:不等式的解集就是在x下方,直线在直线上方时x的取值范围由图象可知,此时14、3【解析】根据抛物线与x轴只有一个公共交点,则判别式等于0,据此即可求解【详解】抛物线y=3x26x+a与x轴只有一个公共点,判别

16、式=36-12a=0,解得:a=3,故答案为3【点睛】本题考查了二次函数图象与x轴的公共点的个数的判定方法,如果0,则抛物线与x轴有两个不同的交点;如果=0,与x轴有一个交点;如果0,与x轴无交点.15、【解析】先画树状图求出所有等可能的结果数,再找出从口袋中随机摸出2个球,摸到的两个球是一红一白的结果数,然后根据概率公式求解【详解】解:根据题意画树状图如下:共有12种等可能的结果数,其中从口袋中随机摸出2个球,摸到的一个红球、一个白球的结果数为4,所以从口袋中随机摸出2个球,则摸到的两个球是一白一黄的概率为故答案为【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可

17、能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率所求情况数与总情况数之比16、8【解析】根据圆锥的侧面积=底面周长母线长2公式即可求出【详解】圆锥体的底面半径为2,底面周长为2r=4,圆锥的侧面积=442=8故答案为:8【点睛】灵活运用圆的周长公式和扇形面积公式17、x4或x1【解析】观察表格求出抛物线的对称轴,确定开口方向,利用二次函数的对称性判断出x=1时,y=-3,然后写出y-3时,x的取值范围即可【详解】由表可知,二次函数的对称轴为直线x=-2,抛物线的开口向下,且x=1时,y=-3,所以,y-3时,x的

18、取值范围为x-4或x1故答案为x-4或x1【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,观察图表得到y=-3时的另一个x的值是解题的关键三、解答题(共7小题,满分69分)18、海里【解析】过点P作,则在RtAPC中易得PC的长,再在直角BPC中求出PB【详解】解:如图,过点P作,垂足为点C.,海里.在中,(海里)在中,(海里).此时轮船所在的B处与灯塔P的距离是海里【点睛】解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线19、(1)证明见解析(2)cm,cm【解析】【分析】(1)连接OB,要证明PB是切线,只需证明OBPB即可;(2)利

19、用菱形、矩形的性质,求出圆心角COD即可解决问题.【详解】(1)如图连接OB、BC,OA=OB,OAB=OBA=30,COB=OAB=OBA=60,OB=OC,OBC是等边三角形,BC=OC,PC=OA=OC,BC=CO=CP,PBO=90,OBPB,PB是O的切线;(2)的长为cm时,四边形ADPB是菱形,四边形ADPB是菱形,ADB=ACB=60,COD=2CAD=60,的长=cm;当四边形ADCB是矩形时,易知COD=120,的长=cm,故答案为:cm, cm.【点睛】本题考查了圆的综合题,涉及到切线的判定、矩形的性质、菱形的性质、弧长公式等知识,准确添加辅助线、灵活应用相关知识解决问题

20、是关键.20、(1)见解析;(2)见解析;279+13.【解析】(1)利用三角形的中位线得出PM=CE,PN=BD,进而判断出BD=CE,即可得出结论PM=PN;(2)先证明ABDACE,得BD=CE,同理根据三角形中位线定理可得结论;如图4,连接AM,计算AN和DE、EM的长,如图3,证明ABDCAE,得BD=CE,根据勾股定理计算CM的长,可得结论【详解】(1)如图1,点N,P是BC,CD的中点,PNBD,PN=BD,点P,M是CD,DE的中点,PMCE,PM=CE,AB=AC,AD=AE,BD=CE,PM=PN,PMN是等腰三角形;(2)如图2,DAE=BAC,BAD=CAE,AB=AC

21、,AD=AE,ABDACE,点M、N、P分别是线段DE、BC、CD的中点,PN=BD,PM=CE,PM=PN,PMN是等腰三角形;当ADE绕点A逆时针旋转到第一次点D、E、C在一条直线上时,如图3,BAC=DAE,BAD=CAE,AB=AC,AD=AE,ABDCAE,BD=CE,如图4,连接AM,M是DE的中点,N是BC的中点,AB=AC,A、M、N共线,且ANBC,由勾股定理得:AN=4,AD=AE=1,AB=AC=6,=,DAE=BAC,ADEAEC,AM=,DE=,EM=,如图3,RtACM中,CM=,BD=CE=CM+EM=【点睛】此题是三角形的综合题,主要考查了三角形的中位线定理,等

22、腰三角形的判定和性质,全等和相似三角形的判定和性质,直角三角形的性质,解(1)的关键是判断出PM=12CE,PN=12BD,解(2)的关键是判断出ABDACE,解(2)的关键是判断出ADEAEC21、(1)见解析;(2)PQmin=7,PQmax=13;(3) Smin=,Smax=18.【解析】(1)根据全等三角形判定定理求解即可.(2)以E为圆心,以5为半径画圆,当E、P、Q三点共线时最PQ最小,当P点在位置时PQ最大,分类讨论即可求解.(3)以E为圆心,以2为半径画圆,分类讨论出P点在位置时,四边形PADC面积的最值即可.【详解】(1)当P为AD中点时,BCP为等腰三角形.(2)以E为圆

23、心,以5为半径画圆 当E、P、Q三点共线时最PQ最小,PQ的最小值是12-5=7. 当P点在位置时PQ最大,PQ的最大值是(3)以E为圆心,以2为半径画圆.当点p为位置时,四边形PADC面积最大.当点p为位置时,四边形PADC最小=四边形+三角形=.【点睛】本题主要考查了等腰三角形性质,直线,面积最值问题,数形结合思想是解题关键.22、(1)证明见解析;(2)从运动开始经过2s或s或s或s时,BEP为等腰三角形【解析】(1)根据内错角相等,得到两边平行,然后再根据三角形内角和等于180度得到另一对内错角相等,从而证得原四边形是平行四边形;(2)分别考虑P在BC和DA上的情况求出t的值.【详解】解:(1)BAC=ACD=90,ABCD,B=D,B+BAC+ACB=D+ACD+DAC=180,DAC=ACB,ADBC,四边形ABCD是平行四边形(2)BAC=90,BC=5cm,AB=3cm,由勾股定理得:AC=4cm,即AB、CD间的最短距离是4cm,AB=3cm,AE=AB,AE=1cm,BE=2cm,设经过ts时,BEP是等腰三角形,当P在BC上时,BP=EB=2cm,t=2时,BEP是等腰三角形;BP=PE,作PMAB于M,BM=ME=BE=1cmcosABC=,BP=cm,t=时,BEP是等腰三角形;BE=PE=2cm,作ENBC于N,则BP=2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论