2022年《直线的倾斜角和斜率》说课稿_第1页
2022年《直线的倾斜角和斜率》说课稿_第2页
2022年《直线的倾斜角和斜率》说课稿_第3页
2022年《直线的倾斜角和斜率》说课稿_第4页
2022年《直线的倾斜角和斜率》说课稿_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、“ 直线的倾斜角和斜率” 说课稿我说课的题目是人教版数学必修2 第三章第一节直线的倾斜角与斜率,我把说课内容分成教材分析、教法学法分析、学情分析、教学过程分析和课堂意 外预案五个部分;一教材分析1教材的位置:直线倾斜角和斜率是解析几何的重要概念之一,是刻画直线倾斜程度的几何 要素与代数表示,是在平面直角坐标系内以坐标法(解析法)的方式来争论 直线及其几何性质 (如直线位置关系、 交点坐标、 点到直线距离等) 的基础;通过该内容的学习,帮忙同学初步明白直角坐标平面内几何要素代数化的过 程,初步渗透解析几何的基本思想和基本争论方法;本课有着开启全章,承 前启后,奠定基调,渗透方法的作用;2、教学目

2、标(1)学问目标懂得直线的倾斜角和斜率的定义,用代数方法刻画直线斜率的过程及掌 握过两点的直线的斜率运算公式(2)才能目标引导同学观看探究发觉,培育同学的探究创新才能(3)德育目标通过同学之间、师生之间的沟通合作,实现共同探究的目标;并体验认 识事物的一般规律:从特别到一般的过程3、教学重点与难点分析 重点: 懂得直线的倾斜角和斜率的概念,经受用代数方法刻画直线斜率的过程,把握过两点的直线的斜率的运算公式 难点: 斜率公式的推导 关键: 借助几何画板演示和对斜率公式的形成过程的争论,来突破难点 二、教法学法分析(1)教学方法 观看发觉、启示引导、演示试验、探究沟通相结合的教学方法(2)教学手段

3、 通过操作运用几何画板绘制直线(形),并测算相关的角度,来探求 刻画直线的要素,通过猜想、证明斜率与倾斜角的关系,充分发挥同学的主 体位置;(3)学法分析 类比、联想,产生学问迁移;观看、试验,体验学问的形成过程;猜 想、求证,达到学问的延展 .为了有效实现教学目标,考虑到同学的学问水平 和懂得才能,借助运算机工具和现实生活中的相关实物图片,从鼓励同学探 究入手,讲练结合,直观演示,使教学更富趣味性和生动性;三、学情分析这节课我挑选在高一、十一班上,这个班同学基础好、思维活跃,便于探究 式的合作学习;但,要留意治理好课堂秩序;四、教学过程分析 本节属于概念课,我依据本节特点,把本节分为六个环节

4、:(1)创设情形,形成概念(2)发觉问题,探究新知(3)深化探究,加深懂得(4)强化训练,巩固双基(5)小结归纳,拓展延长(6)布置作业,提高升华第一个环节:创设情形,形成概念 由生活中一些漂亮的建筑,引出解析几何这一课题,使同学对解析几何产生 深厚的爱好,体会到数学无处不在,简洁介绍解析几何的特点,并通过介绍 笛卡儿和解析几何的形成过程进行数学史训练 以坐标系为桥梁,把几何问题转化为代数问题,通过代数运算争论几 何图形性质的方法,叫坐标法;用坐标法争论几何的学科称为解析几何 它是 17 世纪法国数学家笛卡儿和费马创立的;课后请同学们阅读课本 P111 笛卡儿与解析几何,进一步明白关于解析几何

5、的介绍;然后由比萨斜塔的倾斜程度引出新课,并通过以下三个例子来引出直线的倾 斜角的概念:1、如何确定一条直线?2、如直线过一个已知点能否确定一条直线?如何附加条件使它成立?3、用什么几何量来表示直线的方向呢?连续提出问题1:在直角坐标系中,任何一条直线与x 轴都有一个相对倾斜度,可以用一个什么几何量来反映一条直线与x 轴的相对倾斜程度呢?设计意图: 探究描述直线的倾斜程度的几何要素,由此引出倾斜角的概念;问题 2:依倾斜角的定义,倾斜角的范畴是什么?设计意图:通过争论,让同学明确倾斜角的取值范畴是 0 180 ;2 其次个环节:发觉问题,探究新知 问题 1:我们发觉坡越陡,坡面与地平面所成的角

6、越大,坡面与地平面所成 的角不变的情形下,上升量和前进量都在变化,那么你认为这个角的变化与 上升量和前进量之间到底是怎样的关系?能不能用一个数学式子来表示它 们之间的关系?设计意图:让同学们通过争论初步熟识斜率的概念 问题 2:从上面的争论,我们发觉,假如使用“ 倾斜角” 的概念,“ 坡度”实际就是“ 倾斜角 的正切值” ,由此你认为仍可以用怎样的量来刻画直线 的倾斜程度?设计意图:探究描述直线的倾斜程度的代数表示,由此引出斜率概念;第三个环节:深化探究,加深懂得 提出问题:是否每条直线都有斜率?倾斜角不同,斜率是否相同?由此可以得到怎样结 论?设计意图:沟通数形关系,加深概念懂得;明确可以用

7、斜率表示直线的倾斜 程度;对斜率概念的懂得是本节的难点,同学认为倾斜角就可以刻画直线的方 向,而且每一条直线的倾斜角是唯独确定的,而斜率却不这样,另外,为什 么要用倾斜角的正切定义斜率对同学来说也有肯定困难,教学中通过日常生 活的例子,充分利用同学已有的学问(坡度概念),引导同学把这个同样用 来刻画倾斜程度的量与倾斜角联系起来,并通过坡度的运算方法,引入斜率 的概念 连续提问:两点确定一条直线,直线确定,倾斜角也就确定,斜率也就确定了,那么直线的斜率可以用直线上两点Ax1,y1, Bx2, y2(其中 x1 x2)的坐标来表示,你能自己导 出它们的关系吗?设计意图:通过几何画板的演示,并进行自

8、己的探究,完善两点式斜率公式K = y2y 1(x1 x2),检验得到公式与A,B 两点的次序无关;并让学0 x 2x 1生懂得tan1800tan的内涵,tan的值可正可负,也可为 0,知道当90时,直线的斜率不存在;师生活动:总结两点式斜率运算公式:K = y2y 1(x1 x2) ;x2x 1第四个环节:强化训练,巩固双基 例 1.已知 A3,2,B-4 ,1,C(0,-1 ),求直线 AB,BC,CA 的斜率,并判 断这些直线的倾斜角是锐角仍是钝角;设计意图:直接利用斜率定义式求解,熟识斜率公式,并体验斜率与倾斜角 之间的关系;例 2.在平面直角坐标系中,画出经过原点且斜率分别为 1,

9、-1 ,和 2 的直 线;设计意图:要求同学画图,体验数形结合的思想方法;娴熟应用两点式斜率 公式;第五个环节:小结归纳,拓展延长:以问题形式总结(1)在本节课中,你学到了哪些新的概念?他们之间有什么关系?(2)怎样求出已知两点的直线的斜率?(3)从倾斜角(形)能刻画直线的倾斜程度,到斜率(数)也能刻画直线 的倾斜程度(4)本节课你学到了什么数学思想?解析几何的真谛在于什么?第六个环节:布置作业,提高升华1、摸索 P90 探究与发觉魔术师的地毯2、查询比萨斜塔的倾斜角,并运算其斜率 设计意图:通过这两个题目,深刻的懂得倾斜角和斜率的内涵五 、课堂意外预案课程理念下的教学更多的关注同学自主探究、关注同学的个性进展,鼓 励同学勇于提出问题,培育同学思维的批判性;在课堂上同学往往会提出让 老师感到“ 意外” 的问题

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论