2022年广西南宁市中考数学押题试卷含解析及点睛_第1页
2022年广西南宁市中考数学押题试卷含解析及点睛_第2页
2022年广西南宁市中考数学押题试卷含解析及点睛_第3页
2022年广西南宁市中考数学押题试卷含解析及点睛_第4页
2022年广西南宁市中考数学押题试卷含解析及点睛_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022中考数学模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有一项是符合题目要求的)1据国家统计局2018年1月18日公布,2017年我国GDP总量为827122亿元,首次登上80万亿元的门槛,数据

2、827122亿元用科学记数法表示为( )A8.271221012B8.271221013C0.8271221014D8.2712210142若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为( )AB1CD3等腰三角形底角与顶角之间的函数关系是()A正比例函数B一次函数C反比例函数D二次函数4如图,AB为O的直径,C、D为O上的点,若ACCDDB,则cosCAD ( )ABCD5一列动车从A地开往B地,一列普通列车从B地开往A地,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),如图中的折线表示y与x之间的函数关系下列叙述错误的是()AAB两

3、地相距1000千米B两车出发后3小时相遇C动车的速度为D普通列车行驶t小时后,动车到达终点B地,此时普通列车还需行驶千米到达A地6某种圆形合金板材的成本y(元)与它的面积(cm2)成正比,设半径为xcm,当x3时,y18,那么当半径为6cm时,成本为()A18元B36元C54元D72元7如图,已知ABC,DCE,FEG,HGI是4个全等的等腰三角形,底边BC,CE,EG,GI在同一直线上,且AB=2,BC=1连接AI,交FG于点Q,则QI=()A1BCD8如图,已知AB和CD是O的两条等弦OMAB,ONCD,垂足分别为点M、N,BA、DC的延长线交于点P,联结OP下列四个说法中:;OM=ON;

4、PA=PC;BPO=DPO,正确的个数是()A1B2C3D49若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x21012y83010则抛物线的顶点坐标是()A(1,3)B(0,0)C(1,1)D(2,0)10一个不透明的袋中有四张完全相同的卡片,把它们分别标上数字1、2、3、1随机抽取一张卡片,然后放回,再随机抽取一张卡片,则两次抽取的卡片上数字之积为偶数的概率是()ABCD11如图,O的半径为1,ABC是O的内接三角形,连接OB、OC,若BAC与BOC互补,则弦BC的长为()AB2C3D1.512已知一次函数y=2x+3,当0 x5时,函数y的最大值是()A0 B3 C3 D7二

5、、填空题:(本大题共6个小题,每小题4分,共24分)13若一个多边形每个内角为140,则这个多边形的边数是_14如图,正方形ABCD中,AB=3,以B为圆心,AB长为半径画圆B,点P在圆B上移动,连接AP,并将AP绕点A逆时针旋转90至Q,连接BQ,在点P移动过程中,BQ长度的最小值为_15在RtABC纸片上剪出7个如图所示的正方形,点E,F落在AB边上,每个正方形的边长为1,则RtABC的面积为_16如图,AC是正五边形ABCDE的一条对角线,则ACB_17关于x的一元二次方程x22kx+k2k=0的两个实数根分别是x1、x2,且x12+x22=4,则x12x1x2+x22的值是_18不等式

6、4x的解集为_三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19(6分)定义:对于给定的二次函数y=a(xh)2+k(a0),其伴生一次函数为y=a(xh)+k,例如:二次函数y=2(x+1)23的伴生一次函数为y=2(x+1)3,即y=2x1(1)已知二次函数y=(x1)24,则其伴生一次函数的表达式为_;(2)试说明二次函数y=(x1)24的顶点在其伴生一次函数的图象上;(3)如图,二次函数y=m(x1)24m(m0)的伴生一次函数的图象与x轴、y轴分别交于点B、A,且两函数图象的交点的横坐标分别为1和2,在AOB内部的二次函数y=m(x1)24m的图象上

7、有一动点P,过点P作x轴的平行线与其伴生一次函数的图象交于点Q,设点P的横坐标为n,直接写出线段PQ的长为时n的值20(6分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图治理杨絮一一您选哪一项?(单选)A减少杨树新增面积,控制杨树每年的栽种量B调整树种结构,逐渐更换现有杨树C选育无絮杨品种,并推广种植D对雌性杨树注射生物干扰素,避免产生飞絮E其他根据以上统计图,解答下列问题:(1)本次接受调查的市

8、民共有 人;(2)扇形统计图中,扇形E的圆心角度数是 ;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数21(6分)如图,抛物线y=x2+bx+c(a0)与x轴交于点A(1,0)和B(3,0),与y轴交于点C,点D的横坐标为m(0m3),连结DC并延长至E,使得CE=CD,连结BE,BC(1)求抛物线的解析式;(2)用含m的代数式表示点E的坐标,并求出点E纵坐标的范围;(3)求BCE的面积最大值22(8分)某家电销售商场电冰箱的销售价为每台1600元,空调的销售价为每台1400元,每台电冰箱的进价比每台空调的进价多300元,商场用9000元购进电

9、冰箱的数量与用7200元购进空调数量相等(1)求每台电冰箱与空调的进价分别是多少?(2)现在商场准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售利润为Y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于16200元,请分析合理的方案共有多少种?(3)实际进货时,厂家对电冰箱出厂价下调K(0K150)元,若商场保持这两种家电的售价不变,请你根据以上信息及(2)中条件,设计出使这100台家电销售总利润最大的进货方案23(8分)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动(1)如图1,当点E在边DC上自D向C移动,同时点F在

10、边CB上自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的数量关系和位置关系,并说明理由;(2)如图2,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明);连接AC,请你直接写出ACE为等腰三角形时CE:CD的值;(3)如图3,当E,F分别在直线DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图若AD2,试求出线段CP的最大值24(10分)已知关于x的一元二次方程x2+(2m+3)x+m21有两根,求m的取值范围;若+1求m的值25(10分)如图,有两

11、个形状完全相同的直角三角形ABC和EFG叠放在一起(点A与点E重合),已知AC=8cm,BC=6cm,C=90,EG=4cm,EGF=90,O是EFG斜边上的中点如图,若整个EFG从图的位置出发,以1cm/s的速度沿射线AB方向平移,在EFG平移的同时,点P从EFG的顶点G出发,以1cm/s的速度在直角边GF上向点F运动,当点P到达点F时,点P停止运动,EFG也随之停止平移设运动时间为x(s),FG的延长线交AC于H,四边形OAHP的面积为y(cm2)(不考虑点P与G、F重合的情况)(1)当x为何值时,OPAC;(2)求y与x之间的函数关系式,并确定自变量x的取值范围;(3)是否存在某一时刻,

12、使四边形OAHP面积与ABC面积的比为13:24?若存在,求出x的值;若不存在,说明理由(参考数据:1142=12996,1152=13225,1162=13456或4.42=19.36,4.52=20.25,4.62=21.16)26(12分)如图,AB是O的直径,BE是弦,点D是弦BE上一点,连接OD并延长交O于点C,连接BC,过点D作FDOC交O的切线EF于点F(1)求证:CBEF;(2)若O的半径是2,点D是OC中点,CBE15,求线段EF的长27(12分)(1)计算:(2)解方程:x24x+20参考答案一、选择题(本大题共12个小题,每小题4分,共48分在每小题给出的四个选项中,只有

13、一项是符合题目要求的)1、B【解析】由科学记数法的定义可得答案.【详解】解:827122亿即82712200000000,用科学记数法表示为8.271221013,故选B.【点睛】科学记数法表示数的标准形式为 (10且n为整数).2、A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得=(a+1)2-410=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式的关系:(1)0方程有两个不相等的实数根;(2)=0方程有两个相等的实数

14、根;(3)0方程没有实数根3、B【解析】根据一次函数的定义,可得答案【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=x+90,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.4、D【解析】根据圆心角,弧,弦的关系定理可以得出=,根据圆心角和圆周角的关键即可求出的度数,进而求出它的余弦值【详解】解:=,故选D【点睛】本题考查圆心角,弧,弦,圆周角的关系,熟记特殊角的三角函数值是解题的关键5、C【解析】可以用物理的思维来解决这道题.【详解】未出发时,x=0,y=1000,所以两地

15、相距1000千米,所以A选项正确;y=0时两车相遇,x=3,所以B选项正确;设动车速度为V1,普车速度为V2,则3(V1+ V2)=1000,所以C选项错误;D选项正确.【点睛】理解转折点的含义是解决这一类题的关键.6、D【解析】设y与x之间的函数关系式为ykx2,由待定系数法就可以求出解析式,再求出x6时y的值即可得【详解】解:根据题意设ykx2,当x3时,y18,18k9,则k,ykx2x22x2,当x6时,y23672,故选:D【点睛】本题考查了二次函数的应用,解答时求出函数的解析式是关键7、D【解析】解:ABC、DCE、FEG是三个全等的等腰三角形,HI=AB=2,GI=BC=1,BI

16、=2BC=2,=,=ABI=ABC,ABICBA,=AB=AC,AI=BI=2ACB=FGE,ACFG,=,QI=AI=故选D点睛:本题主要考查了平行线分线段定理,以及三角形相似的判定,正确理解ABCDEF,ACDEFG是解题的关键8、D【解析】如图连接OB、OD;AB=CD,=,故正确OMAB,ONCD,AM=MB,CN=ND,BM=DN,OB=OD,RtOMBRtOND,OM=ON,故正确,OP=OP,RtOPMRtOPN,PM=PN,OPB=OPD,故正确,AM=CN,PA=PC,故正确,故选D9、C【解析】分析:由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标详解:当或时,当时

17、, ,解得 ,二次函数解析式为,抛物线的顶点坐标为,故选C点睛:本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键10、C【解析】【分析】画树状图展示所有16种等可能的结果数,再找出两次抽取的卡片上数字之积为偶数的结果数,然后根据概率公式求解【详解】画树状图为:共有16种等可能的结果数,其中两次抽取的卡片上数字之积为偶数的结果数为12,所以两次抽取的卡片上数字之积为偶数的概率=,故选C【点睛】本题考查了列表法与树状图法求概率,用到的知识点为:概率=所求情况数与总情况数之比 11、A【解析】分析:作OHBC于H,首先证明BOC=120,在RtBOH中,BH=OBsin60=1,

18、即可推出BC=2BH=,详解:作OHBC于HBOC=2BAC,BOC+BAC=180,BOC=120,OHBC,OB=OC,BH=HC,BOH=HOC=60,在RtBOH中,BH=OBsin60=1,BC=2BH=.故选A点睛:本题考查三角形的外接圆与外心、锐角三角函数、垂径定理等知识,解题的关键是学会添加常用辅助线12、B【解析】【分析】由于一次函数y=-2x+3中k=-20由此可以确定y随x的变化而变化的情况,即确定函数的增减性,然后利用解析式即可求出自变量在0 x5范围内函数值的最大值【详解】一次函数y=2x+3中k=20,y随x的增大而减小,在0 x5范围内,x=0时,函数值最大20+

19、3=3,故选B【点睛】本题考查了一次函数y=kx+b的图象的性质:k0,y随x的增大而增大;k0,y随x的增大而减小二、填空题:(本大题共6个小题,每小题4分,共24分)13、九【解析】根据多边形的内角和定理:180(n-2)进行求解即可【详解】由题意可得:180(n2)=140n,解得n=9,故多边形是九边形.故答案为9.【点睛】本题考查了多边形的内角和定理,解题的关键是熟练的掌握多边形的内角和定理.14、31【解析】通过画图发现,点Q的运动路线为以D为圆心,以1为半径的圆,可知:当Q在对角线BD上时,BQ最小,先证明PABQAD,则QD=PB=1,再利用勾股定理求对角线BD的长,则得出BQ

20、的长【详解】如图,当Q在对角线BD上时,BQ最小连接BP,由旋转得:AP=AQ,PAQ=90,PAB+BAQ=90四边形ABCD为正方形,AB=AD,BAD=90,BAQ+DAQ=90,PAB=DAQ,PABQAD,QD=PB=1在RtABD中,AB=AD=3,由勾股定理得:BD=,BQ=BDQD=31,即BQ长度的最小值为(31)故答案为31【点睛】本题是圆的综合题考查了正方形的性质、旋转的性质和最小值问题,寻找点Q的运动轨迹是本题的关键,通过证明两三角形全等求出BQ长度的最小值最小值15、【解析】如图,设AH=x,GB=y,利用平行线分线段成比例定理,构建方程组求出x,y即可解决问题【详解

21、】解:如图,设AHx,GBy,EHBC,FGAC,由可得x,y2,AC,BC7,SABC,故答案为【点睛】本题考查图形的相似,平行线分线段成比例定理,解题的关键是学会利用参数构建方程组解决问题,属于中考常考题型16、36【解析】由正五边形的性质得出B=108,AB=CB,由等腰三角形的性质和三角形内角和定理即可得出结果【详解】五边形ABCDE是正五边形,B=108,AB=CB,ACB=(180108)2=36;故答案为3617、1【解析】【分析】根据根与系数的关系结合x1+x2=x1x2可得出关于k的一元二次方程,解之即可得出k的值,再根据方程有实数根结合根的判别式即可得出关于k的一元二次不等

22、式,解之即可得出k的取值范围,从而可确定k的值【详解】x22kx+k2k=0的两个实数根分别是x1、x2,x1+x2=2k,x1x2=k2k,x12+x22=1,(x1+x2)2-2x1x2=1,(2k)22(k2k)=1,2k2+2k1=0,k2+k2=0,k=2或1,=(2k)211(k2k)0,k0,k=1,x1x2=k2k=0,x12x1x2+x22=10=1,故答案为:1【点睛】本题考查了根的判别式以及根与系数的关系,熟练掌握“当一元二次方程有实数根时,根的判别式0”是解题的关键18、x1【解析】按照去分母、去括号、移项、合并同类项、系数化为1的步骤求解即可.【详解】解:去分母得:x

23、182x,移项合并得:3x12,解得:x1,故答案为:x1【点睛】本题考查了一元一次不等式的解法,熟练掌握解一元一次不等式的步骤是解答本题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤19、y=x5【解析】分析:(1)根据定义,直接变形得到伴生一次函数的解析式;(2)求出顶点,代入伴生函数解析式即可求解;(3)根据题意得到伴生函数解析式,根据P点的坐标,坐标表示出纵坐标,然后通过PQ与x轴的平行关系,求得Q点的坐标,由PQ的长列方程求解即可.详解:(1)二次函数y=(x1)24,其伴生一次函数的表达式为y=(x1)4=x5,故答案为y=x5;(2)二次

24、函数y=(x1)24,顶点坐标为(1,4),二次函数y=(x1)24,其伴生一次函数的表达式为y=x5,当x=1时,y=15=4,(1,4)在直线y=x5上,即:二次函数y=(x1)24的顶点在其伴生一次函数的图象上;(3)二次函数y=m(x1)24m,其伴生一次函数为y=m(x1)4m=mx5m,P点的横坐标为n,(n2),P的纵坐标为m(n1)24m,即:P(n,m(n1)24m),PQx轴,Q(n1)2+1,m(n1)24m),PQ=(n1)2+1n,线段PQ的长为,(n1)2+1n=,n=点睛:此题主要考查了新定义下的函数关系式,关键是理解新定义的特点构造伴生函数解析式.20、(1)2

25、000;(2)28.8;(3)补图见解析;(4)36万人.【解析】分析:(1)将A选项人数除以总人数即可得;(2)用360乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得详解:(1)本次接受调查的市民人数为30015%=2000人,(2)扇形统计图中,扇形E的圆心角度数是360=28.8,(3)D选项的人数为200025%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为9040%=36(万人)点睛:本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图

26、中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小21、(1)y=x2+2x+1(2)2Ey2(1)当m=1.5时,SBCE有最大值,SBCE的最大值=【解析】分析:(1) 1)把A、B两点代入抛物线解析式即可;(2)设,利用求线段中点的公式列出关于m的方程组,再利用0m1即可求解;(1) 连结BD,过点D作x轴的垂线交BC于点H,由,设出点D的坐标,进而求出点H的坐标,利用三角形的面积公式求出,再利用公式求二次函数的最值即可.详解:(1)抛物线 过点A(1,0)和B(1,0) (2)点C为线段DE中点设点E(a,b) 0m1, 当

27、m=1时,纵坐标最小值为2 当m=1时,最大值为2点E纵坐标的范围为 (1)连结BD,过点D作x轴的垂线交BC于点HCE=CDH(m,-m+1) 当m=1.5时,.点睛:本题考查了二次函数的综合题、待定系数法、一次函数等知识点,解题的关键是灵活运用所学知识解决问题,会用方程的思想解决问题.22、(1)每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)共有5种方案;(3)当100k150时,购进电冰箱38台,空调62台,总利润最大;当0k100时,购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元【解析】(1)用“用9000元购进电冰箱

28、的数量与用7200元购进空调数量相等”建立方程即可;(2)建立不等式组求出x的范围,代入即可得出结论;(3)建立y1=(k100)x+20000,分三种情况讨论即可【详解】(1)设每台空调的进价为m元,则每台电冰箱的进价(m+300)元,由题意得, m=1200,经检验,m=1200是原分式方程的解,也符合题意,m+300=1500元,答:每台空调的进价为1200元,每台电冰箱的进价为1500元;(2)由题意,y=(16001500)x+(14001200)(100 x)=100 x+20000,33x38,x为正整数,x=34,35,36,37,38,即:共有5种方案;(3)设厂家对电冰箱出

29、厂价下调k(0k150)元后,这100台家电的销售总利润为y1元,y1=(16001500+k)x+(14001200)(100 x)=(k100)x+20000,当100k150时,y1随x的最大而增大,x=38时,y1取得最大值,即:购进电冰箱38台,空调62台,总利润最大,当0k100时,y1随x的最大而减小,x=34时,y1取得最大值,即:购进电冰箱34台,空调66台,总利润最大,当k=100时,无论采取哪种方案,y1恒为20000元【点睛】本题考查了一次函数的应用,分式方程的应用,不等式组的应用,根据题意找出等量关系是解题的关键23、(1)AE=DF,AEDF,理由见解析;(2)成立

30、,CE:CD=或2;(3) 【解析】试题分析:(1)根据正方形的性质,由SAS先证得ADEDCF由全等三角形的性质得AE=DF,DAE=CDF,再由等角的余角相等可得AEDF;(2)有两种情况:当AC=CE时,设正方形ABCD的边长为a,由勾股定理求出AC=CE=a即可;当AE=AC时,设正方形的边长为a,由勾股定理求出AC=AE=a,根据正方形的性质知ADC=90,然后根据等腰三角形的性质得出DE=CD=a即可;(3)由(1)(2)知:点P的路径是一段以AD为直径的圆,设AD的中点为Q,连接QC交弧于点P,此时CP的长度最大,再由勾股定理可得QC的长,再求CP即可试题解析:(1)AE=DF,

31、AEDF, 理由是:四边形ABCD是正方形,AD=DC,ADE=DCF=90,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动,DE=CF,在ADE和DCF中,AE=DF,DAE=FDC, ADE=90,ADP+CDF=90,ADP+DAE=90,APD=180-90=90,AEDF; (2)(1)中的结论还成立, 有两种情况:如图1,当AC=CE时,设正方形ABCD的边长为a,由勾股定理得,则; 如图2,当AE=AC时,设正方形ABCD的边长为a,由勾股定理得:,四边形ABCD是正方形,ADC=90,即ADCE,DE=CD=a,CE:CD=2a:a=2; 即CE:CD=

32、或2; (3)点P在运动中保持APD=90,点P的路径是以AD为直径的圆,如图3,设AD的中点为Q,连接CQ并延长交圆弧于点P,此时CP的长度最大,在RtQDC中, 即线段CP的最大值是. 点睛:此题主要考查了正方形的性质,勾股定理,圆周角定理,全等三角形的性质与判定,等腰三角形的性质,三角形的内角和定理,能综合运用性质进行推挤是解此题的关键,用了分类讨论思想,难度偏大.24、 (1)m34;(2)m的值为2【解析】(1)根据方程有两个相等的实数根可知1,求出m的取值范围即可;(2)根据根与系数的关系得出+与的值,代入代数式进行计算即可【详解】(1)由题意知,(2m+2)241m21,解得:m

33、34;(2)由根与系数的关系得:+(2m+2),m2,+1,(2m+2)+m21,解得:m11,m12,由(1)知m34,所以m11应舍去,m的值为2【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c1(a1)的两根时,x1+x2ba,x1x2ca是解答此题的关键25、(1)1.5s;(2)S=x2+x+3(0 x3);(3)当x=(s)时,四边形OAHP面积与ABC面积的比为13:1【解析】(1)由于O是EF中点,因此当P为FG中点时,OPEGAC,据此可求出x的值(2)由于四边形AHPO形状不规则,可根据三角形AFH和三角形OPF的面积差来得出四边形AHPO的面积三角形AHF中,AH的长可用AF的长和FAH的余弦值求出,同理可求出FH的表达式(也可用相似三角形来得出AH、FH的长)三角形OFP中,可过O作ODFP于D,PF的长易知,而OD的长,可根据OF的长和FOD的余弦值得出由此可求得y、x的函数关系式(3)先求出三角形ABC和四边形OAHP的面积,然后

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论