CH3静电场中的电介质课件_第1页
CH3静电场中的电介质课件_第2页
CH3静电场中的电介质课件_第3页
CH3静电场中的电介质课件_第4页
CH3静电场中的电介质课件_第5页
已阅读5页,还剩66页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、电磁学讲义2010级物理学专业Electromagnetism Teaching materialsCH3 静电场中的电介质第1页,共71页。1 前言(Preface)一、本章的基本内容及研究思路 静电场的基本规律对于介质中的静电场是否适用? 深入到原子内部,电子和原子核之间以及和其他电子之间仍然是真空,其间的电相互作用仍然服从库仑定律,实验证明,在小到原子核范围( 米),库仑定律依然成立。这样就可以将第一章讲的基本规律应用于电介质的内部。第2页,共71页。 在原子内部,各物理量(如E、电荷密度等)皆称为微观值,即在原子、分子内部各微观点上的值,而实验测得宏观值是物理无限小体积内这些微观值的平

2、均值,物理无限小体积是一个宏观点,其中包含大量的分子,即从宏观看,它足够小,从微观看,它足够大,由于第一章的基本规律适用于微观值,用求平均值的方法可以证明对宏观量也成立。 本章主要讨论电介质在静电场中的极化现象,电介质中的束缚电荷以及空间充满电介质时的电场强度,电介质中的场方程和静电场的能量,提出“电场具有能量,能量定域在场中”是认识上的一个重大飞跃。第3页,共71页。 本章首先以实验为基础介绍了电介质的基本概念;详细介绍了偶极子的概念,及其产生的电场分布和在电场中所受到的力矩;以电介质的等效模型偶极子为基础,给出了电介质的极化机制位移极化和取向极化;引入电极化强度定义,给出了电极化强度和极化

3、电荷的计算;进而引入电位移矢量D和有介质存在时的高斯定理;从静电场方程的普适性出发证明了有介质存在时的静电场方程。最后从电容器的能量计算结果引出电场能量的概念。 第4页,共71页。 本章与上一章的研究方法有相似之处 放入静电场中的导体会由于静电感应而在其表面出现感应电荷。 这是由于导体中有大量的自由电子,它可在导体中自由移动 本章讨论另一类物质,其中的电子被束缚在它所属的原子核范围。只能在原子、分子范围内作微小的移动,这类物质不能导电,故称为绝缘体,也叫电介质。第5页,共71页。 若将介质放入静电场,介质内部与表面都会出现极化电荷,这些极化电荷也会产生一个附加场,与导体不同的是介质内部的总电场

4、不为零,因而不能利用静电平衡时导体内部电场为零这个特点来处理电介质内部的电场,这正是它较之导体困难之处第6页,共71页。 电介质中电子虽然移动的范围微小,但却能使电介质表现出宏观的电性质(如在电容器中插入电介质时电容明显增大),电介质中也存在电场,在电磁现象和实际应用中有其特殊的作用,所以,它也是电磁学的研究对象。 微观值是指该量在介质中微观点的值,在一个微观带电粒子和另一个粒子之间,场强和电势和微观值发生急剧起伏,但宏观实验测得的只是一种平均效果。所以(宏观)电磁学只要关心物理量的宏观值。宏观值是一种统计平均值,当一个体系带有大量微观粒子且处于平衡态时,系统的微观涨落可以忽略,而宏观值是稳定

5、的。 第7页,共71页。二、本章的基本要求1.了解电解质极化机制。掌握电极化强度矢量 的物理意义、 的适用条件及式中各量的意义;2.理解介质中高斯定理的推导。熟练掌握通过对称性分析,用高斯定理求 与 的方法。理解电容器充入电介质后电容值增大的原因,了解充入介质可以提高电容器的耐压程度;3.熟练掌握用 求静电场能量。第8页,共71页。 2 偶极子(electric dipole)一、电介质与偶极子 电介质是由中性分子构成的,是绝缘体。其原因是:电介质的原子对其电子的约束力较强,使得外层价电子处于束缚状态,不易挣脱所属的原子。因此,在电介质内部几乎没有自由电子,所以,电介质不能导电。 偶极子是由两

6、个相距很近而且等值异号的点电荷组成的。第9页,共71页。 很近:场点与两个点电荷的距离比两个点电荷之间的距离大得多。 讨论电介质在电场作用下的变化、变化后对电场的影响。 首先偶极子在电场作用下如何变化(被动方面)、如何激发电场(主动方面)第10页,共71页。二、偶极子在外电场中所受的力矩设外场是均匀的情况正负电荷所受的力分别为:-q+q0总力矩为:矢量式:第11页,共71页。定义电偶极矩(矢量)则(1)力矩 力图使偶极子的电矩 转到与外场 一致的方向上第12页,共71页。(2)在外场 一定时,电偶极矩 唯一地决定偶极子所受的力偶矩 ,反映了其固有属性;(3)当 时,即 ,力矩 值最大;当 时,

7、即 ,力矩 值为零。电偶极子在均匀电场中的电位能为:结果: 是一个稳定平衡位置第13页,共71页。三、偶极子激发的静电场P当 求得的就是中垂线上和延长线的场强!第14页,共71页。在延长线上的场强: 取偶极子中心为坐标原点,则正负电荷产生的场强大小(方向在延长线上向)为:第15页,共71页。在中垂面上的场强: 仍取偶极子中心为坐标原点,则正负电荷产生的场强大小为:叠加后保留一级小量得: 总场强的方向与中垂面垂直且与反向,即第16页,共71页。讨论: 上述两个结果表明:当场点较远时,偶极子在的沿长线及中垂面上激发的场强取决于两个因素: 偶极子本身的偶极矩; 场点与偶极子的距离。 偶极矩 在其场强

8、公式中的地位与点电荷的电量在其场强中的地位相似(前者 ,后者 );但两者的场强对 的依赖关系差别很大,偶极子中 ,而点电荷中, 。第17页,共71页。 电偶极子的场强只与 和 的乘积有关,例如 增大一倍而 减小一倍时它在远处产生的场强不变。这也正是前面把 称为电偶极矩的原因,因为它确实是描述偶极子属性的一个物理量。 而实际中,如偶极发射中,通常有再次可见第18页,共71页。 3 电介质的极化(dieletric polarization)一、电介质的电结构和极化现象 电介质内宏观运动的电荷极少,导电能力极弱; 静电问题:忽略电介质微弱的导电性理想的绝缘体。 电介质:中性分子。中性:分子中正负电

9、荷等值异号,可将其中的所有正电荷等效于一个正点电荷,负电荷等效于一个负点电荷; 一个分子对外的电效应:用一对等值异号的正、负电荷来代替,它们在分子中的位置分别称为正、负电荷的中心。第19页,共71页。 当这两个点电荷的中心不重合而有一微小距离时,它们就构成一电偶极子,其电偶极距 也称为分子电偶极距,是研究物质电性质的基元。两类电介质分子(1)分子的正、负电荷中心在没有外电场时彼此重合,其电偶极距为0 “无极分子”(如H2、N2、CH4等都是无极分子);(2)分子的正、负电荷的中心在没有外场时并不重合,等量的正、负电荷中心互相错开,从而电偶极距不为0分子的“固有电距”,“有极分子”(如NH3、H

10、2O、CO2、SO2等)。 有极分子组成的介质,当然也不显电性。第20页,共71页。 两类电介质放入外电场中,都要发生极化现象。 无极分子电介质的极化称为位移极化; 有极分子电介质的极化称为取向极化; 有极分子电介质也有位移极化效应,即分子也会被外电场“拉长”,但是与取向极化效应相比,位移极化效应可以忽略不计。第21页,共71页。有极分子电介质的极化称为取向极化 无外场时,每个分子等效电偶极子的电偶极矩不为零, 分子的热运动,各电矩的方向分布杂乱无章,大量分子对外界的电作用的平均效果为零, 或者在电介质内任取一小体积V,在V内所有分子电矩的矢量和为零,即第22页,共71页。 加入外电场 ,介质

11、中每个分子电矩都要受到外电场的作用力矩 ,使得每个电矩都要尽量转向外场 的方向,在电介质内任取一小体积V,在V所有分子电矩的矢量和不为零,即 第23页,共71页。 越强,转向的整齐程度越高,上面的矢量和亦越大。 由于极化,在介质表面上或体内将出现附加电荷,称为极化电荷或束缚电荷(不能脱离分子或原子的约束力而自由运动), 这些电荷又要产生附加电场 ,使得总电场为第24页,共71页。无极分子电介质的极化称为位移极化 无外场时,每个分子等效电偶极子的电偶极矩为零,大量分子对外界的电作用的平均效果为零,在电介质内任取一小体积V,V内所有分子电矩的矢量和为零,即 第25页,共71页。 加入外电场,每个分

12、子的正点中心和负电中心受到外电场的作用发生相对位移,每个分子的电偶极矩不再为零,且均有指向外场的趋势。 这时在电介质内任取一小体积V,在V所有分子电矩的矢量和不为零,即第26页,共71页。 越强,正负电荷中心相对位移越大,上面的矢量和亦越大。 由于极化,在介质表面上或体内将出现附加电荷,称为极化电荷或束缚电荷(不能脱离分子或原子的约束力而自由运动), 这些电荷又要产生附加电场 ,使得总电场为第27页,共71页。 介质的极化程度直接影响总场的分布,因此有必要引入描述电介质极化程度的物理量。二、极化强度矢量定义:电极化强度矢量 是描述电介质被极化程度的一个物理量,其定义式为物理意义为单位体积内所有

13、分子电矩的矢量和 表示物理无限小:宏观足够小,可看成点,微观足够大,仍包含大量分子第28页,共71页。三、极化强度与场强的关系 电极化强度矢量与场强的关系由介质本身的性质决定,其中场强是因,极化强度是果。 1、各向同性电介质实验得 为电介质的极化率(无量纲) 若介质中各点的 都相等,则称为均匀介质 特点:极化强度矢量与场强的方向一致; 极化率与场强无关,取决于均匀介质自身; 第29页,共71页。2、各向异性电介质 一些晶体材料(如水晶,液晶等)的电性能是各向异性的,它们的极化规律虽然也是线性的,但与方向有关, 与 的直角分量之间关系的普遍形式为:第30页,共71页。这时极化率要用 、 、 等九

14、个分量来描述,通常把这种物理量叫张量。 有一些特殊的电介质,如酒石酸钾钠,钛酸钡等,极化强度矢量与电场强度矢量的关系是复杂的非线性关系,并具有和铁磁体的磁滞效应类似的电滞效应,如图所示。所以这种材料叫铁电体。铁电体一般都有很强的极化和压电效应,在实际中有特殊的应用。第31页,共71页。还有一类电介质如石蜡,它们在极化后能将极化“冻结”起来,极化强度并不随外电场的撤消而完全消失,这与永磁体的性质类似,它们叫驻极体。第32页,共71页。4 极化电荷( polarization charge) 电场是电介质极化的原因,极化则反过来对电场造成影响,这种影响之所以发生是由于电介质在极化后出现一种附加的电

15、荷(叫做极化电荷,有时称为束缚电荷)激发附加的电场。电介质的极化程度不仅体现在P上,还体现在极化电荷多少上,因此,极化强度矢量P和极化电荷之间必定有内在联系。第33页,共71页。一、极化电荷 导体带电:导体失去或得到一些自由电子, 整个导体所有带电粒子的电量的代数和不为0。 有时一个导体电量的代数和为0(中性导体),在外场中出现等值异号电荷局部带电。电介质在宏观上带电指的是什么?第34页,共71页。电介质之间的互相摩擦,实现了电子转移,分开后带电;电介质与带电导体接触带电但是,一块电介质电量代数和为0也可实现宏观带电!只要介质在外电场作用下发生极化,则在介质内部取一物理无限小体积,其中所包含的

16、带电粒子的电量代数和就可能不为0,这种由于极化而出现的宏观电荷叫做极化电荷,把不是由极化引起的宏观电荷叫做自由电荷。第35页,共71页。无论是极化电荷还是自由电荷,都按第一章的规律激发静电场。分别表示极化电荷及其密度分别表示自由电荷及其密度二、极化电荷体密度与极化强度的关系当电介质处于极化状态时,一方面在它体内出现未抵消的电偶极距,这一点是通过极化强度矢量 来描述的;另一方面,在电介质的某些部位将出现未抵消的束博电荷,即极化电荷。第36页,共71页。 可以证明,对于均匀的电介质(即极化率为常量)并不要求均匀极化,极化电荷集中在它的表面上。 电介质产生的一切宏观后果都是通过极化电荷来体现的。极化

17、电荷和极化强度的关系?以位移极化为模型第37页,共71页。设想介质极化时,每个分子的正电中心相对负电中心有个位移 。用 代表分子中正、负电荷的数量,则分子电矩:设单位体积有 个分子,则极化强度矢量第38页,共71页。如图所示:在极化了的电介质内取一个面元矢量ds=nds,计算因极化而穿过面元的极化电荷:穿过ds的电荷所占据的体积是以ds为底、长度为l的一个斜柱体。此柱体的体积为 因为单位体积内正极化电荷数量为nq,故在此体积内极化电荷总量为:这也就是由于极化而穿过ds的束薄电荷!第39页,共71页。现在我们取一任意闭合面s,则P通过整个闭合面s的通量应等于因极化而穿过此面的束缚电荷总量。根据电

18、荷守恒定律,这等于s面内净余的极化电荷的负值,即这公式表达了极化强度与极化电荷分布的一个普遍关系。第40页,共71页。 对于均匀介质,可以证明其极化电荷体密度恒为零。即均匀电介质的内部无极化电荷,因此极化电荷只能分布在均匀电介质的表面或两种电介质的界面上。 从物理方面考虑,若把闭合面取在电介质体内,前面的束缚电荷移出时,后面还有束博电荷补充进来,若介质均匀,移出和补充的量相等,其体内不会出现净余的束缚电荷。对于非均匀电介质,体内是可能有极化电荷的。 下面只考虑均匀电介质的情形。第41页,共71页。三、极化电荷面密度与极化强度的关系+电介质电介质第42页,共71页。在电介质的表面上,为锐角的地方

19、将出现一层正极化电荷,为钝角的地方则出现一层负极化电荷,表面电荷层的厚度是 ,故面元ds上的极化电荷为: 从而极化电荷面密度为: 第43页,共71页。这里, 是P沿介质表面外法线n方向的投影。此式表明为锐角的地方, ; 为钝角的地方 ; 这与前面的分析结论一致。上式是介质表面极化电荷面密度分布与极化强度矢量间的一个重要公式。第44页,共71页。例1 求均匀极化的电介质球表面上极化电荷的分布,已知极化强度为PPAZO解 取球心0为原点,极轴与P平行的球坐标系。由于轴对称性,表面上任一点A的极化电荷面密度e/只与有关。因 与 P 的夹角为 故 第45页,共71页。 上式表明, 在右半球 , 左半球

20、 在两半球的分界线上(赤道线)=/2 ,/=0 ,在两极(极轴上的两点)=0 和 , 最大!讨论:两种媒质分界面上极化电荷的面密度媒质1媒质2第46页,共71页。(1)媒质2是电介质而媒质1是真空(2)媒质2是电介质而媒质1是金属(3)两种媒质都是电介质第47页,共71页。5 电介质中的电场 电位移D 有介质时的高斯定理(Gauss theorem in dieletric) 一、电介质中的电场 电介质极化时出现极化电荷,这些极化电荷和自由电荷一样,在周围空间(无论介质内部或外部)产生附加的电场E/。根据场强叠加原理,在有电介质存在时,空间任意一点的场强E是外电场E0和E/的矢量和:第48页,

21、共71页。例如上例的介质球极化后,在介质球外部左右两部分E/与E0方向一致总电场E增强;上下两部分E/与E0方向相反总电场E减弱;一般情况下E/与E0 成一定夹角。然而介质内部情况简单,E/处外和电场E0的方向相反,其后果是使总场E比原来的E0减弱,决定电介质极化程度的不是原来的外场E0,而是电介质内实际的电场E ,EP,所以极化电荷在介质内部的附加场E/总是起着减弱极化的作用称为退极化场第49页,共71页。例2 求均匀极化的电介质球在球心产生的退极化场,已知极化强度为PPAOZ解 例1中已求得根据轴对称性,球心的电场只有Z分量第50页,共71页。第51页,共71页。二、有介质时的高斯定理、电

22、位移 静电场中的电介质的性质和导体有一定相似之处,这就是电荷与电场的平衡分布是相互决定的。但更复杂。因为在电介质里极化电荷的出现并不能把体内的电场完全抵消,因而在计算和讨论问题时,电介质内部需要由两个物理量 描述。最麻烦的问题是极化强度和极化电荷的分布由于互相牵扯而事先不能知道。如果能制定一套方法,从头起就使这些量不出现,从而有助于计算的简化,为此我们引入一个新物理量电位移矢量。第52页,共71页。 高斯定理是建立在库仑定律的基础上的,在有电介质存在时,它也成立。只不过计算总电场的电通量时,应计及高斯面内所包含的自由电荷q0和极化电荷q/ 令第53页,共71页。矢量点函数 叫做电位移矢量。 说

23、明在各向同性的电介质中电位移等于场强的倍,如果是各向异性电介质,如石英晶体,则P与E ,D与E的方向一般并不相同,电极化系数xe也不能只用数值表示,则D=E失去了它的意义,但 仍适用。第54页,共71页。 对于任何矢量场都可用几何曲线直观表示出来,意义都是相同的。如D线(电位移线),切线方向表示该点D方向,D线疏密程度表示该点的大小。D线发自正自由电荷,终止于负自由电荷,无自由电荷处不中断;E线发自正电荷(自由+极化),终止于负电荷(自由+极化) ,无电荷处不中断; P线发自负极化电荷,终止于正极化电荷,无极化电荷处不中断。 当D具有某种对称性时,就可以求出D,从而得到E,其中的介电常数是较易

24、测量的量。第55页,共71页。例3 平行板电容器充满了极化率为Xe的均匀电介质,已知充电后金属极板上的自由电荷面密度为0,求平行板电容器中的场强。解 作柱形高斯面,它的一个底在一个金属极板体内,另一个底在电介质中,侧面与电场线平行。在金属内E=0,D=0。所以 + + + + +第56页,共71页。例4 在整个空间充满介电常数为 的电介质,其中有一点电荷 ,求场强分布。qS解 这个问题具有对称性(分析)以 为球心任意半径 作球形高斯面 ,则第57页,共71页。 有电介质时的场强减小为真空中场强的 倍 因为在电介质极化后,点电荷 周围出现了与之异号的极化电荷,极化电荷产生的电场削弱了 产生的电场

25、。 通常把这个效应说成极化电荷对 起了一定的屏蔽作用。第58页,共71页。由上面两个例题可以看出: 只与自由电荷有关,与空间充有什么样的电介质无关! 注意这是有条件的。可以用唯一性定理证明,当均匀电介质充满电场所在空间,或均匀电介质表面是等位面时才成立(或者说无限大空间均充满均匀介质或分区均匀充满)。第59页,共71页。思考题:平行板电容器在它的一半充上介电常数的介质,能不能认为也满足分区均匀充满条件呢?+ 不能:因为介质与真空的界面不是等位面,因此极板上的自由电荷将重新分布(先前是均匀分布的)。1=2 ,D1=01, D2=02, D1/1=D2/2, D1/D2=01/02=1/r,如果在

26、区充入另一种电介质,01与02之比也随之变化 ! 第60页,共71页。 6 有介质时的静电场方程 (equation of electrostatic field in dielectric)一、有介质时的高斯定理第61页,共71页。注意,电位移矢量D只是一个辅助物理量,真正描述电场的物理量仍是电场强度E。引出电位移矢量D的好处是可以绕开极化电荷把静电场规律表述出来,同时也可以为求解电场带来方便,不过这种方法只适用于有对称性的静电场问题。对于一般的静电场问题,只靠高斯定理是不能完全确定静电场解的,还必须考虑另一条基本定理环路定理。第62页,共71页。二、有介质时的环路定理不管是自由电荷产生的外电场 ,还是极化电荷产生的退极化场 ,它们都是保守场,均满足环路定理,即第63页,共71页。 为了要确定D、E两个矢量。还需附加条件 ,这叫电介质的性能方程。如果已知自由电荷在空间的分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论