版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022中考数学模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(共10小题,每小题3分,共30分)1如图,在ABCD中,AB=6,AD=9,BAD的平分线交BC于点E,交DC的延长线于点F,BGAE,垂足为G,若BG=,则CEF的面积是()ABCD2下列图案中,既是轴对称图形又是中心对称图形的是()ABCD3如图,在RtABC中,B90,
2、AB6,BC8,点D在BC上,以AC为对角线的所有ADCE中,DE的最小值是( )A4B6C8D104如图,在正方形网格中建立平面直角坐标系,若A0,2,B1,1,则点C的坐标为( )A1,-2B1,-1C2,-1D2,15如图所示的四个图案是四国冬季奥林匹克运动会会徽图案上的一部分图形,其中为轴对称图形的是()ABCD6已知二次函数y=ax2+bx+c(a1)的图象如图所示,则下列结论:a、b同号;当x=1和x=3时,函数值相等;4a+b=1;当y=2时,x的值只能取1;当1x5时,y1其中,正确的有()A2个B3个C4个D5个7在平面直角坐标系中,点是线段上一点,以原点为位似中心把放大到原
3、来的两倍,则点的对应点的坐标为( )AB或CD或8如图所示,如果将一副三角板按如图方式叠放,那么 1 等于( )ABCD9函数(为常数)的图像上有三点,则函数值的大小关系是( )Ay3y1y2By3y2y1Cy1y2y3Dy2y3y110下列“慢行通过,注意危险,禁止行人通行,禁止非机动车通行”四个交通标志图(黑白阴影图片)中为轴对称图形的是( )ABCD二、填空题(本大题共6个小题,每小题3分,共18分)11在ABCD中,按以下步骤作图:以点B为圆心,以BA长为半径作弧,交BC于点E;分别以A,E为圆心,大于AE的长为半径作弧,两弧交于点F;连接BF,延长线交AD于点G. 若AGB=30,则
4、C=_.12如图,AB是O的直径,C是O上的点,过点C作O的切线交AB的延长线于点D若A=32,则D=_度13如图,在平面直角坐标系中,点P的坐标为(0,4),直线yx3与x轴、y轴分别交于点A、B,点M是直线AB上的一个动点,则PM的最小值为_14在平面直角坐标系中,抛物线y=x2+x+2上有一动点P,直线y=x2上有一动线段AB,当P点坐标为_时,PAB的面积最小15按照神舟号飞船环境控制与生命保障分系统的设计指标,“神舟”五号飞船返回舱的温度为214.该返回舱的最高温度为_16如果反比例函数的图象经过点A(2,y1)与B(3,y2),那么的值等于_.三、解答题(共8题,共72分)17(8
5、分)在平面直角坐标系xOy中有不重合的两个点与.若Q、P为某个直角三角形的两个锐角顶点,当该直角三角形的两条直角边分别与x轴或y轴平行(或重合),则我们将该直角三角形的两条直角边的边长之和称为点Q与点P之间的“直距”记做,特别地,当PQ与某条坐标轴平行(或重合)时,线段PQ的长即为点Q与点P之间的“直距”例如下图中,点,点,此时点Q与点P之间的“直距”. (1)已知O为坐标原点,点,则_,_; 点C在直线上,求出的最小值;(2)点E是以原点O为圆心,1为半径的圆上的一个动点,点F是直线上一动点.直接写出点E与点F之间“直距”的最小值18(8分)在围棋盒中有 x 颗黑色棋子和 y 颗白色棋子,从
6、盒中随机地取出一个棋子,如果它是黑色棋子的概率是;如果往盒中再放进 10 颗黑色棋子,则取得黑色棋子的概率变为求 x 和 y 的值19(8分)如图1为某教育网站一周内连续7天日访问总量的条形统计图,如图2为该网站本周学生日访问量占日访问总量的百分比统计图请你根据统计图提供的信息完成下列填空:这一周访问该网站一共有 万人次;周日学生访问该网站有 万人次;周六到周日学生访问该网站的日平均增长率为 20(8分)据某省商务厅最新消息,2018年第一季度该省企业对“一带一路”沿线国家的投资额为10亿美元,第三季度的投资额增加到了14.4亿美元求该省第二、三季度投资额的平均增长率21(8分)某班为确定参加
7、学校投篮比赛的任选,在A、B两位投篮高手间进行了6次投篮比赛,每人每次投10个球,将他们每次投中的个数绘制成如图所示的折线统计图(1)根据图中所给信息填写下表: 投中个数统计 平均数 中位数 众数 A 8 B7 7(2)如果这个班只能在A、B之间选派一名学生参赛,从投篮稳定性考虑应该选派谁?请你利用学过的统计量对问题进行分析说明22(10分)已知,ABC中,A=68,以AB为直径的O与AC,BC的交点分别为D,E()如图,求CED的大小;()如图,当DE=BE时,求C的大小23(12分)(1)计算:sin45(2)解不等式组:24如图,抛物线y=x2+bx+c与x轴交于A,B两点(A在B的左侧
8、),其中点B(3,0),与y轴交于点C(0,3)(1)求抛物线的解析式;(2)将抛物线向下平移h个单位长度,使平移后所得抛物线的顶点落在OBC内(包括OBC的边界),求h的取值范围;(3)设点P是抛物线上且在x轴上方的任一点,点Q在直线l:x=3上,PBQ能否成为以点P为直角顶点的等腰直角三角形?若能,求出符合条件的点P的坐标;若不能,请说明理由参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解析】解:AE平分BAD,DAE=BAE;又四边形ABCD是平行四边形,ADBC,BEA=DAE=BAE,AB=BE=6,BGAE,垂足为G,AE=2AG在RtABG中,AGB=90,AB=
9、6,BG=,AG=2,AE=2AG=4;SABE=AEBG=BE=6,BC=AD=9,CE=BCBE=96=3,BE:CE=6:3=2:1,ABFC,ABEFCE,SABE:SCEF=(BE:CE)2=4:1,则SCEF=SABE=故选A【点睛】本题考查1相似三角形的判定与性质;2平行四边形的性质,综合性较强,掌握相关性质定理正确推理论证是解题关键2、B【解析】根据轴对称图形与中心对称图形的概念求解【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,也是中心对称图形,故此选项正确;C、不是轴对称图形,是中心对称图形,故此选项错误;D、不是轴对称图形,是中心对称图形,故此
10、选项错误故选B【点睛】考查了中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合3、B【解析】平行四边形ADCE的对角线的交点是AC的中点O,当ODBC时,OD最小,即DE最小,根据三角形中位线定理即可求解【详解】平行四边形ADCE的对角线的交点是AC的中点O,当ODBC时,OD最小,即DE最小。ODBC,BCAB,ODAB,又OC=OA,OD是ABC的中位线,OD=AB=3,DE=2OD=6.故选:B.【点睛】本题考查了平行四边形的性质,解题的关键是利用三角形中位线定理进行求解.4、C【解析】根据A点坐标即
11、可建立平面直角坐标【详解】解:由A(0,2),B(1,1)可知原点的位置,建立平面直角坐标系,如图,C(2,-1)故选:C【点睛】本题考查平面直角坐标系,解题的关键是建立直角坐标系,本题属于基础题型5、D【解析】根据轴对称图形的概念求解【详解】解:根据轴对称图形的概念,A、B、C都不是轴对称图形,D是轴对称图形故选D【点睛】本题主要考查轴对称图形,轴对称图形的判断方法:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形6、A【解析】根据二次函数的性质和图象可以判断题目中各个小题是否成立【详解】由函数图象可得,a1,b1,即a、b异号,故错误,x=-1和x=5时
12、,函数值相等,故错误,-2,得4a+b=1,故正确,由图象可得,当y=-2时,x=1或x=4,故错误,由图象可得,当-1x5时,y1,故正确,故选A【点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答7、B【解析】分析:根据位似变换的性质计算即可详解:点P(m,n)是线段AB上一点,以原点O为位似中心把AOB放大到原来的两倍,则点P的对应点的坐标为(m2,n2)或(m(-2),n(-2),即(2m,2n)或(-2m,-2n),故选B点睛:本题考查的是位似变换、坐标与图形的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么
13、位似图形对应点的坐标的比等于k或-k8、B【解析】解:如图,2=9045=45,由三角形的外角性质得,1=2+60=45+60=105故选B 点睛:本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键9、A【解析】试题解析:函数y(a为常数)中,-a1-10,函数图象的两个分支分别在二、四象限,在每一象限内y随x的增大而增大,0,y30;-,0y1y1,y3y1y1故选A10、B【解析】根据轴对称图形的概念对各选项分析判断即可得出答案【详解】A不是轴对称图形,故本选项错误;B是轴对称图形,故本选项正确;C不是轴对称图形,故本选项错误;D不是轴对称图形,故本选项错误
14、故选B二、填空题(本大题共6个小题,每小题3分,共18分)11、120【解析】首先证明ABG=GBE=AGB=30,可得ABC=60,再利用平行四边形的邻角互补即可解决问题.【详解】由题意得:GBA=GBE,ADBC,AGB=GBE=30,ABC=60,ABCD,C=180-ABC=120,故答案为:120.【点睛】本题考查基本作图、平行四边形的性质等知识,解题的关键是熟练掌握基本知识12、1【解析】分析:连接OC,根据圆周角定理得到COD=2A,根据切线的性质计算即可详解:连接OC,由圆周角定理得,COD=2A=64,CD为O的切线,OCCD,D=90-COD=1,故答案为:1点睛:本题考查
15、的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键13、【解析】认真审题,根据垂线段最短得出PMAB时线段PM最短,分别求出PB、OB、OA、AB的长度,利用PBMABO,即可求出本题的答案【详解】解:如图,过点P作PMAB,则:PMB=90,当PMAB时,PM最短,因为直线y=x3与x轴、y轴分别交于点A,B,可得点A的坐标为(4,0),点B的坐标为(0,3),在RtAOB中,AO=4,BO=3,AB=,BMP=AOB=90,B=B,PB=OP+OB=7,PBMABO,即:,所以可得:PM=14、(-1,2)【解析】因为线段AB是定值,故抛物线上的点到直线的距离最短,则
16、面积最小,平移直线与抛物线的切点即为P点,然后求得平移后的直线,联立方程,解方程即可【详解】因为线段AB是定值,故抛物线上的点到直线的距离最短,则面积最小,若直线向上平移与抛物线相切,切点即为P点,设平移后的直线为y=-x-2+b,直线y=-x-2+b与抛物线y=x2+x+2相切,x2+x+2=-x-2+b,即x2+2x+4-b=0,则=4-4(4-b)=0,b=3,平移后的直线为y=-x+1,解得x=-1,y=2,P点坐标为(-1,2),故答案为(-1,2)【点睛】本题主要考查了二次函数图象上点的坐标特征,三角形的面积以及解方程等,理解直线向上平移与抛物线相切,切点即为P点是解题的关键15、
17、17【解析】根据返回舱的温度为214,可知最高温度为21+4;最低温度为21-4【详解】解:返回舱的最高温度为:21+4=25;返回舱的最低温度为:21-4=17;故答案为:17【点睛】本题考查正数和负数的意义4指的是比21高于4或低于416、【解析】分析:由已知条件易得2y1=k,3y2=k,由此可得2y1=3y2,变形即可求得的值.详解:反比例函数的图象经过点A(2,y1)与B(3,y2),2y1=k,3y2=k,2y1=3y2,.故答案为:.点睛:明白:若点A和点B在同一个反比例函数的图象上,则是解决本题的关键.三、解答题(共8题,共72分)17、(1)3,1;最小值为3;(1)【解析】
18、(1)根据点Q与点P之间的“直距”的定义计算即可;如图3中,由题意,当DCO为定值时,点C的轨迹是以点O为中心的正方形(如左边图),当DCO3时,该正方形的一边与直线yx3重合(如右边图),此时DCO定值最小,最小值为3;(1)如图4中,平移直线y1x4,当平移后的直线与O在左边相切时,设切点为E,作EFx轴交直线y1x4于F,此时DEF定值最小;【详解】解:(1)如图1中,观察图象可知DAO113,DBO1,故答案为3,1(i)当点C在第一象限时(),根据题意可知,为定值,设点C坐标为,则,即此时为3;(ii)当点C在坐标轴上时(,),易得为3;()当点C在第二象限时(),可得; ()当点C
19、在第四象限时(),可得;综上所述,当时,取得最小值为3;(1)如解图,可知点F有两种情形,即过点E分别作y轴、x轴的垂线与直线分别交于、;如解图,平移直线使平移后的直线与相切,平移后的直线与x轴交于点G,设直线与x轴交于点M,与y轴交于点N,观察图象,此时即为点E与点F之间“直距”的最小值.连接OE,易证,在中由勾股定理得,解得,.【点睛】本题考查一次函数的综合题,点Q与点P之间的“直距”的定义,圆的有关知识,正方形的性质等知识,解题的关键是理解题意,学会利用新的定义,解决问题,属于中考压轴题失分原因第(1)问 (1)不能根据定义找出AO、BO的“直距”分属哪种情形;(1)不能找出点C在不同位
20、置时, 的取值情况,并找到 的最小值第(1)问 (1)不能根据定义正确找出点E与点F之间“直距” 取最小值时点E、F 的位置;(1)不能想到由相似求出GO的值18、x=15,y=1【解析】根据概率的求法:在围棋盒中有x颗黑色棋子和y颗白色棋子,共x+y颗棋子,如果它是黑色棋子的概率是,有成立化简可得y与x的函数关系式;(2)若往盒中再放进10颗黑色棋子,在盒中有10+x+y颗棋子,则取得黑色棋子的概率变为,结合(1)的条件,可得,解可得x=15,y=1【详解】依题意得,化简得,解得, .,检验当x=15,y=1时,x=15,y=1是原方程的解,经检验,符合题意.答:x=15,y=1.【点睛】此
21、题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=19、(1)10;(2)0.9;(3)44%【解析】(1)把条形统计图中每天的访问量人数相加即可得出答案;(2)由星期日的日访问总量为3万人次,结合扇形统计图可得星期日学生日访问总量占日访问总量的百分比为30%,继而求得星期日学生日访问总量;(3)根据增长率的算数列出算式,再进行计算即可【详解】(1)这一周该网站访问总量为:0.5+1+0.5+1+1.5+2.5+3=10(万人次);故答案为10;(2)星期日的日访问总量为3万人次,星期日学生日访问总量占日访问总量的百分比为30
22、%,星期日学生日访问总量为:330%=0.9(万人次);故答案为0.9;(3)周六到周日学生访问该网站的日平均增长率为:=44%;故答案为44%考点:折线统计图;条形统计图20、第二、三季度的平均增长率为20%【解析】设增长率为x,则第二季度的投资额为10(1+x)万元,第三季度的投资额为10(1+x)2万元,由第三季度投资额为10(1+x)214.4万元建立方程求出其解即可【详解】设该省第二、三季度投资额的平均增长率为x,由题意,得:10(1+x)214.4,解得:x10.220%,x22.2(舍去)答:第二、三季度的平均增长率为20%【点睛】本题考查了增长率问题的数量关系的运用,一元二次方
23、程的解法的运用,解答时根据第三季度投资额为10(1+x)214.4建立方程是关键21、(1)7,9,7;(2)应该选派B;【解析】(1)分别利用平均数、中位数、众数分析得出答案;(2)利用方差的意义分析得出答案【详解】(1)A成绩的平均数为(9+10+4+3+9+7)=7;众数为9;B成绩排序后为6,7,7,7,7,8,故中位数为7;故答案为:7,9,7;(2)= (79)2+(710)2+(74)2+(73)2+(79)2+(77)2=7;= (77)2+(77)2+(78)2+(77)2+(76)2+(77)2= ;从方差看,B的方差小,所以B的成绩更稳定,从投篮稳定性考虑应该选派B【点睛
24、】此题主要考查了中位数、众数、方差的定义,方差是反映一组数据的波动大小的一个量方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好22、()68()56【解析】(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明CED=A即可,(2)连接AE,在RtAEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.【详解】()四边形ABED 圆内接四边形,A+DEB=180,CED+DEB=180,CED=A,A=68,CED=68()连接
25、AEDE=BD,,DAE=EAB=CAB=34,AB是直径,AEB=90,AEC=90,C=90DAE=9034=56【点睛】本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题23、(1);(2)2x1【解析】(1)根据绝对值、特殊角的三角函数值可以解答本题;(2)根据解一元一次不等式组的方法可以解答本题【详解】(1)sin45=3-+-5+=3-+3-5+1=7-5;(2)(2) 由不等式,得x-2,由不等式,得x1,故原不等式组的解集是-2x1【点睛】本题考查解一元一次不等式组、实数的运算、特殊角的三角函数值,解答本题的关键是明确解它们各自的解答方法24、(1)y=x2+2x+3(2)2h4(3)(1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年工业萘项目立项申请报告模板
- 2025年智能化配电与电控装置项目规划申请报告模板
- 函授毕业生登记表自我鉴定范文15篇
- 2025年汽车安全气囊及装置项目提案报告
- 2025年宠物水族项目立项申请报告
- 2025年无菌包装用包装材料项目立项申请报告
- 2025年汽车覆盖件模具项目提案报告模式
- 2024年度水利工程行政合同行政优益权实施要点分析3篇
- 资料员个人工作总结范文五篇
- 房屋租赁协议书六篇
- 无菌注射剂生产线清洁验证方案
- 民航服务礼仪(民航服务类专业)全套教学课件
- 2024年健康照护师理论试题
- 《可燃气体检测仪》课件
- 《黄土高填方地基技术规程》
- 部编版九年级中考复习戏剧阅读 (教师版)
- 裸光纤施工方案
- 2023年意识形态工作责任清单及风险点台账
- 《经典动画赏析》课件
- 小学英语-Unit2 Ways to go to school Part B Read and write教学设计学情分析教材分析课后反思
- 外研社新标准商务英语综合教程1
评论
0/150
提交评论