人口老龄化论文_第1页
人口老龄化论文_第2页
人口老龄化论文_第3页
人口老龄化论文_第4页
人口老龄化论文_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、. 人口老龄化问题摘要人口老龄化问题是21世纪中国所面临的严峻社会问题,已引起全社会的广泛关注,但目前我们对老龄化影响因素的研究还不够系统和全面。本文从老龄化的影响因素出发,建立主成分分析法、线性拟合和灰色预测的数学模型,得到影响人口老龄化的四个主要因素,并科学的预测出了未来几年老龄化人口的数量。首先,我们通过阅读大量的相关文献,确定出十几个影响人口老龄化的影响因子,并从国家统计局上获得相应指标的原始数据,结合合理的假设,建立不同年份各个影响因子的一个二维表。 其次,我们建立主成分分析法模型,将所获得的指标和原始数据进展标准化处理,运用SPSS软件进展分析,得到了影响人口老龄化的主要因素有:人

2、均GDP,预期平均寿命,教育经费投入,农村人口比重这四个方面。再次,利用上述已提取的四个影响因素,通过线性拟合得出四个主要因素和人口老龄化的函数关系式:y= -42.9250+ 0.6473*1-0.3521*2+ 0.8515*3+ 0.6739*4再通过灰色预测模型结合上述关系式求解出未来人口老龄化的比重,随后我们将历史年份预测值与真实值进展比照,其结果较为吻合,从而验证出了模型的合理性。下表为我们预测出的未来6年老龄化人口比重:20102011201220132014208.58.910.3最后,我们对此模型进展了优缺点评价和模型改良。 本文特色是将线性拟合和灰色预

3、测模型相结合。首先根据历史数据,线性拟合出人口老龄化比重与四个影响因素之间的的函数关系式,再运用灰色预测模型预测出四个影响因素的未来指标,最后代入已拟合好的函数关系式中,就可以求解出未来老龄化人口的比重。关键字:人口老龄化 主成分分析法 线性拟合 灰色预测 问题重述人口问题是全球最主要的社会问题之一,是当代许多社会问题的核心。据官方统计,到2050年,世界人口将到达90100亿,其中60岁以上的人口将到达20亿。控制人口的增长已迫在眉睫。而老龄化问题是人口问题中最突出的问题。目前世界人口老龄化程度较深的国家有日本、意大利、德国等,其高达25%以上,而我国65岁以上的老年人口占总人口7%。按这个

4、标准,我国已进入老龄化社会。控制人口老龄化问题已刻不容缓,对社会经济的稳定和可持续开展都有重要意义。利用附表中的数据及互联网数据,建立数学模型,分析老龄化人口数与诸多影响因素之间的关系,为防止老龄化提供依据,同时预测未来两年我国老龄化人口数量。2、问题分析21世纪的中国是一个不可逆转的老龄社会。日益增多的老龄人口以及与此相伴而生的社会经济问题已引起全社会的广泛关注。针对影响因素与人口老龄之间的关系和预测未来老龄化人口数量这两个问题我们做了如下分析:1.就题目中所呈现的我国人口老龄化的现状,我们从影响此现状的因素入手,选择经济、科技、政策、环境等四个方面,并从这四方面展开分析,最终计算出全面合理

5、的影响因素。2.基于第二问,预测未来人口老龄化的数量也就是先用灰色预测模型,由历史值得出各个影响因素的未来值,再通过线性拟合关系式,运算出结果的过程。3、模型假设 1、假设在中国统计局搜集的数据均真实有效。2、假设影响人口老龄化各因素之间互不相关。3、本文以年份为时间变量,忽略了以地区差异性为特点的人口密度指标。4、符号说明*人口老龄化比重*1女性比重*2农村人口比重*3恩格尔系数*4预期平均寿命*5人均GDP*6教育投入*7科学技术投入*8文体投入*9社会保障投入*10医疗卫生投入*11环境保护*12自然增长率y人口老龄化比重常数预期平均寿命的权重人均GDP的权重教育经费投入的权重农村人口比

6、重的权重指标年份第个指标的各年数据的平均值第个指标的各年数据的标准差原始数据相关系数矩阵表4-1-15、模型建立与求解模块主成分的筛选数据查找我们通过中国统计局得到所需年份的统计年鉴,对原始因素的相关数据进展了搜集整理,得到与本模型相关的数据。详见附录一模型分析主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。在此题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。这些涉及的因素一般称为指标,在多元统计分析中也称为变量。因为每个变量都在不同程度上反映了所研究问题的*些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。在用

7、统计方法研究多变量问题时,变量太多会增加计算量和问题分析的复杂性,我们希望在进展定量分析的过程中,涉及的变量较少,得到的信息量较多。应选用此种方法进展主要因素的提炼。数据标准化处理 将0409年各个影响因素的有关原始指标数据写成矩阵形式,然后运用标准化公式 其为年份,为指标,为原始数据,为第个指标各年的平均值,是的标准差进展处理详见附录二,消除各指标受纲量的影响。模型建立在实际情况中影响人口老龄化的因素较多,包括如下表的12个以及未列出的各种因素,我们将这些因素的近几年数据找出并将原始数据写成的矩阵输入SPSS软件中经过一些运算得到相关的指标。解释的总方差成份初始特征值提取平方和载入合计方差的

8、 %累积 %合计方差的 %累积 %111.21493.44893.44811.21493.44893.4482.4824.01797.465.4824.01797.4653.2291.90799.372.2291.90799.3724.051.42699.798.051.42699.7985.024.202100.000.024.202100.00066.194E-165.161E-15100.00074.194E-163.495E-15100.00082.078E-161.732E-15100.00095.452E-174.543E-16100.00010-1.211E-16-1.009E-

9、15100.00011-2.883E-16-2.402E-15100.00012-7.270E-16-6.058E-15100.000表5-1-1在实际研究中,由于主成分的目的是为了降维,减少变量的个数,故一般选取少量的主成分不超过5或6个,只要他门所能包含原变量信息的86%以上即可。由上表可以得到每一个主成分的奉献率和累计奉献率,相关系数的特征值即各主成分的方差,可以看出第一个成分的特征值的累积奉献率已经高达93.448%,所以我们选取第一个成分为主成分。再由SPSS得到相关系数矩阵的特征向量如下:成份矩阵a成份12345女性比重1.964.232.087.092-.004农村人口比重2-.

10、985.118.046.108-.041恩格尔系数3-.881.432-.171.052.078预期平均寿命4.997-.034-.026-.038.059人均GDP5.993.018-.097-.031.050教育经费投入6.992.108-.067-.015.005科学技术投入7.984-.042.167.032.027文体投入18.984.011.174.027.041社会保障投入9.966.162-.185-.055-.055医疗卫生10.935-.032环境保护11.971.222-.058-.017-.063自然增长率12-.896.340.251-.139

11、.003表5-1-2由上表,我们在第一个主成分中选取特征向量的绝对值在0.985以上的四个最主要的因素。主要因素预期平均寿命人均GDP教育经费投入农村人口比重特征向量0.9970.9930.9920.985分析得出结果根据上表所示,我们据此提取出人均GDP,平均寿命,教育经费投入,农村人口比重这四个主成分。模块线性拟合求出各出成分与人口老龄的关系模型分析根据模型的提炼,我们得出预期平均寿命,人均GDP,教育经费投入,农村人口比重这四个主成分,据此故列出此四种成分的数据下表:年份预期平均寿命人均GDP教育投入农村人口比重200471.7412335.583365.9458.24200571.96

12、14185.363974.8357.01200672.1916499.704780.4156.10200772.4320169.467122.3255.06200872.7223707.719010.2154.32200972.9625575.4810437.5453.41表5-2-1经过以上计算我们仅仅得出了主成分,但主成分与因变量人口老龄化比重之间的关系还不十清楚确,我们可以看到人口老龄化比重是随着人均GDP,平均寿命,教育经费投入的增加而增加,随着农村人口比重的增加而减少。我们需要*种函数关系,来确定四者与人口老龄化之间的关系。故而选取线性拟合的方式来建立模型。模型建立设y为因变量即人口

13、老龄化比重,*1为预期平均寿命,*2为人均GDP,*3为教育经费的投入,*4为农村人口比重可得如下线性方程根据上面所列线性回归模型在MATLAB软件中编写程序,进展运算得出如下结果程序见附录三。-42.9250.6473-0.35210.85150.6739注:因b2与b3所得结果较小,且对最终运算有较大影响,故运算结果保存小数较多故所得线性方程为y= -42.9250+ 0.6473*1-0.3521*2+ 0.8515*3+ 0.6739*4模型检验为了分析模型的可靠性,我们进一步,将06到09年的四项主成分数据带入线性方程中进展运算,将预测值与实际值进展比拟,得出结论如下表5-2-2 数

14、值年份实际值预测值绝对误差20047.67.5-0.120057.77.7020067.97.8-0.120078.18.0-0.120088.38.3020098.58.4-0.1表5-2-2从表5-2-2可看出,绝对误差的绝对值均在 0.1 之,说明回归方程具有较高的代表性和显著性,可以很好的表示这四者之间的关系。模块灰色预测模型推测未来人口老龄化比重模型分析我们要推测未来人口老龄化比重,需要知道未来人均GDP,平均寿命,教育经费投入,农村人口比重这四者在未来*年的数据,但是这些我们无法从实际中查知,故我们可以利用灰色预测模型进展预测。模型优势灰色预测模型介于白色模型和黑色模型之间,白色即

15、数据全部,黑色即数据全部未知,灰色则是局部局部未知。灰色预测则是应用灰色模型GM(1,1)对灰色系统进展分析、建模、求解、预测的过程。由于灰色建模理论应用数据生成手段,弱化了系统的随机性,使紊乱的原始序列呈现*种规律,规律不明显的变得较为明显,建模后还能进展残差辨识,即使较少的历史数据,任意随机分布,也能得到较高的预测精度。模型的建立首先,分别列出各个主成分的历史数据如表5-2-1,然后将编写好的灰色预测模型源程序详见附录四输入MATLAB软件中,将各个主成分的数据依次输入,再输入预知未来多少年,即可得出预测数据,如下即为人均GDP预测未来6年的数据图5-3-1:图5-3-1百分绝对误差为:3

16、159.6508%预测值为: 30485.5856 35337.1424 40960.7888 47479.3972 55035.3942 63793.8726然后依次得出其他主成分未来6年的数据如下表5-3-1成分数据年份平均预期寿命人均GDP元教育经费投入万元农村人口比重%201073.214130485.585613691.07752.5345201173.470235337.142417402.215851.6861201273.727340960.788822119.305650.8514201373.985247479.397228115.022150.0302201474.244

17、55035.394235735.952949.2222201574.503763793.872645422.633148.4273表5-3-1模型的求解根据这些预测数据再结合模块中所求得的线性回归方程进展计算得出未来6年的人口老龄化比重预测如下表5-3-220102011201220132014208.58.910.3表5-3-2同时将人口老龄化比重的历史数据和预测数据做如下列图5-3-2:图5-3-26、模型的评价模型优点选择主成分分析法,结合国家统计局所披露的数据,权威客观的分析出了影响人口老龄化的主要因素。针对许多未知因素仍影响人口老龄化的这一问题,我们采用灰色预测

18、模型,将不明确的因素科学的进展处理,使模型更加准确。结合已有年份的数据及科学研究说明,我们所分析的结果合理准确,具有说服力。模型缺点因数据的局限,我们只得到了近六年各个因素的指标,使得在大量数据支持方面不是特别的满意。由于人口惯性对人口老龄化的奉献在不同的时间段波动起伏,其相对于长的时间跨度较为敏感,所以针对预测两年的老龄化人口数量,我们把它作为既定的因素,没有考虑进去。模型改良.更深入的搜集数据,得到尽可能多的年份的数据,使评价结果更具说服力。2. 建立优化模型,考虑人口密度因素,表达老龄化在空间分布上的不平衡。3. 将结果进展优化,我们认为可以从城乡老龄化人口数量,地区老龄化人口数量这两个

19、侧面恰当的反映我国人口老龄化的特点。7、应对人口老龄化的建议1. 快速提高经济供养能力,适当调整经济政策。2. 充分发挥家庭、社会和个人的作用,构筑三者互为补充的养老体系。3. 借鉴西方兴旺国家经历,稳妥提高法定退休年龄。8、参考文献1 原新,世杰 1982-2007我国人口老龄化原因的人口学因解分析 学海2009.42 何建宁,朱霄雪 人口老龄化影响因素的灰色关联度分析 经济纵横 2010年第6期3 中华人人民国国家统计局 20042009“中国统计年鉴“../tjsj/ndsj/4 金磊 甄珍 冉2010世博会影响力的定量评估数学模型 2010年9、附录附录一人口老龄化比

20、重女性比重农村人口比重恩格尔系数20047.6048.4858.2447.2020057.7048.4757.0145.5020067.9048.4856.1043.0020078.1048.5055.0643.1020088.3048.5354.3243.6720098.5048.5653.4140.97预期平均寿命人均GDP教育投入科学技术投入200471.7412335.583365.941095.34200571.9614185.363974.831334.91200672.1916499.704780.411688.50200772.4320169.467122.321783.042

21、00872.7223707.719010.212129.21200972.9625575.4810437.542744.52社会保障投入医疗卫生环境保护自然增长率20041524.50854.6493.695.8720051817.641036.81132.975.8920062123.901320.23161.245.2820075447.161989.96995.825.1720086804.292757.041451.365.0820097606.683994.191934.045.05附录二女性比重农村人口比重恩格尔系数预期平均寿命2004-0.791.431.52-1.292005-

22、0.860.740.73-0.812006-0.650.23-0.42-0.312007-0.09-0.35-0.370.2120080.77-0.77-0.110.8420091.62-1.28-1.351.36人均GDP教育投入科学技术投入文体投入2004-1.21-1.07-1.19-1.152005-0.86-0.86-0.78-0.752006-0.42-0.58-0.18-0.2720070.270.23-0.02-0.0720080.940.890.570.6120091.291.391.611.63社会保障投入医疗卫生环境保护自然增长率2004-0.99-0.94-0.891.

23、242005-0.88-0.79-0.841.292006-0.77-0.56-0.80-0.2820070.450.000.26-0.5720080.950.640.83-0.8020091.241.661.45-0.88附录三format longn=6;m=4;y=7.6 7.7 7.9 8.1 8.3 8.5;*1=71.74 71.96 72.19 72.43 72.72 72.96;*2=12335.58 14185.36 16499.70 20169.46 23707.71 25575.48;*3=3365.94 3974.83 4780.41 7122.32 9010.21 1

24、0437.54;*4=58.24 57.01 56.10 55.06 54.32 53.41;*=ones(n,1),*1,*2,*3,*4;b,bint,r,rint,s=regress(y,*)附录四y=input(请输入数据 );%输入数据请用如例所示形式:48.7 57.17 68.76 92.15n=length(y);yy=ones(n,1);yy(1)=y(1);for i=2:nyy(i)=yy(i-1)+y(i);endB=ones(n-1,2);for i=1:(n-1) B(i,1)=-(yy(i)+yy(i+1)/2; B(i,2)=1;endBT=B;for j=1:

25、n-1 YN(j)=y(j+1);endYN=YN;A=inv(BT*B)*BT*YN;a=A(1);u=A(2);t=u/a;t_test=input(请输入需要预测个数:);i=1:t_test+n;yys(i+1)=(y(1)-t).*e*p(-a.*i)+t;yys(1)=y(1);for j=n+t_test:-1:2 ys(j)=yys(j)-yys(j-1);end*=1:n;*s=2:n+t_test;yn=ys(2:n+t_test);plot(*,y,r,*s,yn,*-b);det=0;for i=2:n det=det+abs(yn(i)-y(i);enddet=det

26、/(n-1);disp(百分绝对误差为:,num2str(det),%);disp(预测值为: ,num2str(ys(n+1:n+t_test);附录五相关系数矩阵R*1*2*3*4*5*6*7*8相关*11.000-.886-.522.830-.734.930.937.964*2-.8861.000.675-.972.913-.994-.986-.969*3-.522.6751.000-.808.748-.655-.652-.605*4.830-.972-.8081.000-.893.962.961.930*5-.734.913.748-.8931.000-.885-.848-.816*6.930-.994-.655.962-.8851.000.99

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论