下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、第12讲 定点问题一、解答题 1设椭圆经过点,且离心率等于.(1)求椭圆的方程;(2)过点作直线交椭圆于两点,且满足,试判断直线是否过定点,若过定点求出点坐标,若不过定点请说明理由.2已知椭圆的离心率为,M是椭圆C的上顶点,F2是椭圆C的焦点,的周长是6()求椭圆C的标准方程;()过动点P(1,t)作直线交椭圆C于A,B两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标3已知椭圆C:(ab0),四点P1(1,1),P2(0,1),P3(1,),P4(1,)中恰有三点在椭圆C上.()求C的方程;()设直线l不经过P2点且与C相交于A,B两点.若直
2、线P2A与直线P2B的斜率的和为1,证明:l过定点.4已知点P是椭圆C:上一点,F1、F2分别是椭圆的左、右焦点,(1)求椭圆C的标准方程;(2)设直线l不经过P点且与椭圆C相交于A,B两点.若直线PA与直线PB的斜率之和为1,问:直线l是否过定点?证明你的结论5已知椭圆C:1(ab0)的左、右焦点分别为F1、F2,点A为椭圆的左顶点,点B为上顶点,|AB|且|AF1|+|AF2|4.(1)求椭圆C的方程;(2)过点F2作直线l交椭圆C于M、N两点,记AM、AN的斜率分别为k1、k2,若k1+k23,求直线l的方程.6已知M过点,且与N:内切,设M的圆心M的轨迹为曲线C(1)求曲线C的方程:(
3、2)设直线l不经过点且与曲线C相交于P,Q两点若直线PB与直线QB的斜率之积为,判断直线l是否过定点,若过定点,求出此定点坐标;若不过定点,请说明理由7已知椭圆C:,直线l:ykx+b与椭圆C相交于A、B两点(1)如果k+b,求动直线l所过的定点;(2)记椭圆C的上顶点为D,如果ADB,证明动直线l过定点P(0,);(3)如果b,点B关于y轴的对称点为B,向直线AB是过定点?如果是,求出定点的坐标;如果不是,请说明理由8已知椭圆C:,若直线l:ykxm与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点求证:直线l过定点,并求出该定点的坐标9已知点为椭圆C:上一点
4、,且直线过椭圆C的一个焦点(1)求椭圆C的方程(2)不经过点的直线l与椭圆C相交于A,B两点,记直线的斜率分别为,若,直线l是否过定点?若过定点,求出该定点坐标;若不过定点,说明理由10椭圆C的焦点为,椭圆上一点.直线l的斜率存在,且不经过点,l与椭圆C交于A,B两点,且.(1)求椭圆C的方程;(2)求证:直线l过定点.11已知椭圆的一个顶点为,离心率为(1)求椭圆C的方程;(2)若直线l与椭圆C交于M、N两点,直线BM与直线BN的斜率之积为,证明直线l过定点并求出该定点坐标12已知椭圆:的离心率为,且过点.(1)求椭圆的标准方程;(2)若不过点的动直线与椭圆交于,两点,且,求证:直线过定点,
5、并求该定点的坐标.13如图,已知椭圆上顶点为A,右焦点为F,直线与圆相切,其中.(1)求椭圆的方程;(2)不过点A的动直线l与椭圆C相交于P,Q两点,且,证明:动直线l过定点,并且求出该定点坐标.14已知椭圆的右焦点为F,过点的直线l与E交于A,B两点.当l过点F时,直线l的斜率为,当l的斜率不存在时,.(1)求椭圆E的方程.(2)以AB为直径的圆是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.15已知椭圆:(),与轴负半轴交于,离心率.(1)求椭圆的方程;(2)设直线:与椭圆交于,两点,连接,并延长交直线于,两点,已知,求证:直线恒过定点,并求出定点坐标.16在平面直角坐标系x
6、Oy中,已知椭圆,如图所示,斜率为k(k0)且不过原点的直线l交椭圆C于两点A,B,线段AB的中点为E,射线OE交椭圆C于点G,交直线x3于点D(3,m)(1)求m2+k2的最小值;(2)若|OG|2|OD|OE|,求证:直线l过定点17已知椭圆的离心率为,左、右焦点分别为、,且过点(1)求C的方程;(2)设点M为C上的动点,求的取值范围;(3)设椭圆C的左顶点为A,不过点A的直线(,)与C交于P,Q两点,PQ的中点为E,若,求证:直线l经过定点,并求出定点坐标18已知椭圆过、两点.(1)求椭圆的离心率;(2)设椭圆的右顶点为,点在椭圆上(不与椭圆的顶点重合),直线与直线交于点,直线交轴于点,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 女士长睡袍产品供应链分析
- 可移动建筑物出租行业市场调研分析报告
- 互联网法律服务行业营销策略方案
- 5G健康监测设备行业营销策略方案
- 供应链管理(SCM)行业经营分析报告
- 在线英语教育行业营销策略方案
- 蒸馏塔市场发展前景分析及供需格局研究预测报告
- 玻璃清洁制剂商业机会挖掘与战略布局策略研究报告
- 花盆托盘项目营销计划书
- 乡村影视拍摄基地行业经营分析报告
- 2024年酱香型白酒 相关公司行业营销方案
- DL-T-5743-2016水电水利工程土木合成材料施工规范
- 《活着》读书分享含内容模板
- DL5190.5-2019电力建设施工技术规范第5部分:管道及系统
- 工会体育比赛委外承办服务商选择项目投标方案(技术标)
- 康得新案例分析审计
- 2022年全国小学生天文知识竞赛考试题库(含答案)
- 湖北省黄石市金海大屋边矿区建筑石料用石灰岩矿、硅质岩矿矿产资源开发利用与生态复绿方案
- 诊所医疗废物、污水处理方案
- 2024入团积极分子入团考试题库含答案
- 2024江苏苏豪控股集团招聘高频考题难、易错点模拟试题(共500题)附带答案详解
评论
0/150
提交评论