空气净化材料_第1页
空气净化材料_第2页
空气净化材料_第3页
空气净化材料_第4页
空气净化材料_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、FormationoftheSouthPacificShallowSalinityMinimum:ASouthernOceanPathwaytotheTropicalPacificIntheeasternSouthPacificOcean,atadepthofabout200m,asalinityminimumisfound.Thisminimumisassociatedwithaparticularwatermass,theShallowSalinityMinimumWater(SSMW).SSMWoutcropsinafreshtongue(SAsubminA)centeredatabou

2、t45S.2sAsup-1a.-3人).Thetransformedwaterturnsnorthwardwiththegyrecirculationandcontributestothehydrographicstructureofthegyrefarthernorth.BecausetheSouthPacificprovidesmostofthesourcewatersthatupwellalongtheequatorialPacific,variabilityinSouthPacifichydrographymayinfluenceequatorialPacifichydrography

3、.Becauseone-halfofthetransformationisfoundtobecontrolledthroughEkmantransport,variabilityinwindforcingatthesouthernrimofthesubtropicalgyremaybeasourceforvariabilityoftheequatorialPacific.(ProQuestInformationandLearning:.denotesformulaeomitted.)IntroductionThetropical/extratropicalexchangeofwatercanb

4、eviewedasameridional-verticalorsubtropicalcell(STC)drivenbysubductionandupwelling,whichareconnectedviaEkmantransportandinteriorflow.Intheextratropicswaterissubductedfromthemixedlayerandflowsequatorwardininteriorwind-drivenpathwaysandwesternboundarycurrents.Neartheequatorthiswaterupwellsbackintothemi

5、xedlayerandistransportedpolewardtothesubductionsitesthroughthemeridionalcomponentoftheEkmantransportseeSchottetal.(2004)foranSTCreview.STCshavebeenidentifiedinalloceansusingobservationaldata(e.g.,JohnsonandMcPhaden1999;Schottetal.2002;Zhangetal.2003)andmodels(e.g.,McCrearyandLu1994;Rothsteinetal.199

6、8).OneinterestinstudyingtheSTCsistheirpotentialinvolvementinlow-frequencyclimatevariabilityoftheocean-atmospheresystem,becausebothupwellingandsubductionarecontrolledthroughair-seaexchangeofmomentum,heat,andfreshwater.InparticularthevariabilityofthePacificOceanSTCisofimportance,becauseitmayberelatedt

7、oElNi?o-SouthernOscillation(ENSO)withitsfar-reachingsocioeconomicimpacts.Pacificvariabilityhasbeendecomposedintointerannualandinterdecadalvariability(Zhangetal.1997).InterannualvariabilityisusuallyassociatedwiththeENSOphenomenonandmaybeexplainedthroughatmosphere-oceaninterplayneartheequator.Decadalv

8、ariability,however,couldbetheresultofvariabilitythatisgeneratedintheextratropicaloceanandsubsequentlyadvectedtotheequator.Twomechanismshavebeenproposedtogeneratevariabilitybasedontemperature(T)andtransport(v).Kleemanetal.(1999)proposedamodelsolelybasedonfluctuationsinSTCtransport,thatis,withoutfluct

9、uationsinthetemperaturefield(vT).Fluctuationsintransportgeneratesea-surfacetemperaturefluctuationsthatcouldfeedbackontheatmosphericcirculation.Observationalevidencefortransportfluctuationsinthenear-equatorialflowhasbeenpresentedby,forexample,McPhadenandZhang(2002)andMeinenetal.(2001).GuandPhilander(

10、1997)proposedamechanismbasedontheadvectionoftemperatureanomalieswithanaverageflowfield(vT).Subductedtemperatureanomaliesintheextratropicsappearwithatimelagattheequator.TheirupwellingcausestemperatureanomaliestoappearintheTropicsthatfeedbackontotheatmosphericmeridionalcirculation.Theappearanceofawarm

11、anomalyalongtheequatorstrengthenstheextratropicalwindand,throughanincreaseofevaporation,introducesacoldanomalyintheextratropics.Thesubductionofsuchacoldanomalythenappearswithatimelagalongtheequatorwhereitsupwellinginitiatesacoldanomalythere.However,thepersistenceoftemperatureanomaliessubductedintoth

12、esubtropicalgyreiscurrentlyunderdebate.Hindcastrunsofcoupledocean-atmospheremodelssuggestthatequatorialPacificisothermaldepthvariabilitymaybegeneratedbythelocalwindstress(andEkmanpumping)variabilityattheequatorratherthanfromanomaliesofextratropicalorigin(Schneideretal.1999).InparticularfortheNorthPa

13、cificlittlecouplingbetweenTropicsandextratropicswasfound.However,YeagerandLarge(2004)identifiedsea-surfacetemperaturevariabilityalongtheequatorgeneratedthroughisopycnaladvectionofnotonlytemperaturebuttemperature/salinity(T/S)anomalies.Theyanalyzedoutputofanoceanmodelforcedwith40yearsofrealisticsurfa

14、cefluxes.Theirworkemphasizestheroleofbothheatandfreshwateranomaliesindecadalvariability.McCrearyandLu(1994)showedthatthermoclinewatermovingequatorwardoriginatesfromtheeastandpolewardsideofthesubtropicalgyres.ThissuggestsfortheSouthPacific(SP)thattheSouthernOcean(SO)canplayaroleinventilatingthePacifi

15、cequatorialthermocline(Toggweileretal.1991;Johnson2001).AprominentexchangepathfromtheSOtowardtheequatorinallSouthernHemisphereoceansisthefreshtongueofAntarcticIntermediateWater(AAIW).AAIWhasitsorigininthesubductionofpolarsurfacewaters(see,e.g.,Molinelli1978)andspreadsatthebaseofthesubtropicalgyres,a

16、tdepthsbetween600and1000m.However,withacoredensityanomalyofabout27.2kgmAsup-3A,AAIWliesbelowthewaterthatupwellsalongthePacificequator.UpwellingalongthePacificequatoris,rather,fedinthedensityrangeofwatersadvectedintheEquatorialUndercurrent(EUC)andthesubsurfacecountercurrents(SCC)(Roweetal.2000),thesu

17、bsurfacepathwaysfromwesttoeast(anddeepandshallow)alongtheequator.TheequatorialPacificisfedbyabout60%-3人(JohnsonandMcPhaden1999;Rodgersetal.2003).AsecondfreshtongueisfoundaboveAAIWintheinteriorofthesoutheastSP(atabout26kgmAsup-3A;seeFig.1)namedShallowSalinityMinimumWater(SSMW;Reid1973;TsuchiyaandTall

18、ey1996)orEasternSouthPacificIntermediateWater(EmeryandMeincke1986;Schneideretal.2003).SSMWisfoundinbothhemispheres.Itsformationhasbeenexplainedthroughthesinkingofsubantarcticsurfacewatersbelowhigher-salinitywaters(e.g.,Reid1973).Consequentlyoneexpectsacorrespondingsignatureintheseasurfacesalinitywhe

19、reSSMWissubducted.NorthPacificsurfacewatersfreshennorthofthesubtropicalgyreandalongtheeasternboundary(Fig.1)sothattheconceptualmodelforSSMWformationholdshere.IntheSP,however,alocalmeridionalfreshtongueislocatedatabout45.Consequently,asimplenorthwardtransferoffreshsurfacewaterwithsubsequentsubduction

20、cannotexplaintheformationofSSMWintheSPentirely.SSMWoutcropsinafreshsurfacetongue(SAsubminA)(seeFig.1).TheshapeofSAsubminApromptedanumberofinvestigatorstoinferawestwardflowatthesouthernrimoftheSPsubtropicalgyre(seeDeacon1977forareview).Suchaflow,incombinationwithcoastalfresh-waterinputandapositivepre

21、cipitation-evaporationbalance,wasthoughttogeneratethesurfacesalinitypatternwithlowestsalinitiesintheeast(Davilaetal.2002;Schneideretal.2003).However,aclearsignalofwestwardflowbetweentheeastward-flowingsubtropicalgyreandtheeastward-flowingextensionoftheACCwasneverdetected.NeshybaandFonseca(1980)suspe

22、ctedtransienteddiescontributedtothewestwardtransportbutdatacoveragewastoosparsetoprovethisidea.InthispaperwestudywatermasstransformationinthesouthernpartoftheSPsubtropicalgyretoexplaintheformationofSAsubmnandSSMW.Afterintroducingthedata,transformationmechanismsformixedlayerandthermoclinewatersaredis

23、cussed.Azonalmixedlayerbudgetisusedtoquantifytheimportanceofair-seaexchangeandadvection.Thentheroleofdiffusioninthewatermasstransformationisdiscussed.TheformationofSAsubminAisexplainedasanadvectivefeature.Last,variabilityofthewatermasstransformationanditsrelationtodecadalvariabilityofthehydrographic

24、structureoftheSPandEquatorialPacificarediscussed.DataTheoceansurfaceandinteriordataproductsusedinthisstudyaremainlythe1990-99averagetemperature,salinity,andvelocityfieldsfromthebeta-7versionofthesimpleoceandataassimilation(SODA)analysis(Cartonetal.2000a,b).SODAinvolvesanoptimalinterpolationassimilat

25、ionofdatainanumericalmodel(theModularOceanModelMOM-2,GFDL,Princeton,NewJersey).Seasurfacetemperature,altimeterseasurfaceheight,andtemperatureandsalinityprofiledataareassimilated.Themodeldomaincoversalloceansbetween60S/Nwithahorizontalresolutionof1xiinlatitude/longitudeinthesubtropics,0.45xiintheTrop

26、ics.Themodelisoptimizedforphysicsoftheupperocean;14ofits20verticallevelsplacedintheupper500m.WewilltreattheSODAanalysisfieldsasupper-oceanclimatologies.Surfacefluxmomentum,evaporation,andprecipitationfieldsaretakenfromtheNationalCentersforEnvironmentalPrediction(NCEP)-NationalCenterforAtmosphericRes

27、earch(NCAR)reanalysis(Kistleretal.2001),whichwasalsousedtogenerateorforcetheSODAanalysis(Cartonetal.2000b).ComparisonstudiesbetweenNCEP-NCARreanalysisdataanddirectobservations(e.g.,Smithetal.2001)foundtheNCEPdatatooverestimatefluxes(latentandsensibleheat)byabout20WmAsup-2a.Thisintroducesanerrorforth

28、enetheatfluxaswellasforthefreshwaterflux(precipitation-evaporationbalance)vialatentheat.Wedecidedtouseboththeoriginaldata(NCEP)andaversionreducedby20WmAsup-2A(NCEP-20W)forthecalculations.Forcomparison,theSouthamptonOceanographicCenter(SOC)air-seafluxfields(Joseyetal.1998;GristandJosey2003)aswellasth

29、edaSilvaetal.(1994a,b)climatologyareused.Botharebasedonobservationaldataandbothclimatologiesareconstrainedviaalinearinverseanalysisusinghydrographicoceanheattransports.Upper-layerhydrographyanddynamicsThehydrographicstructureoftheSPsubtropicalgyreiscomplexincomparisonwiththeotheroceans.Temperature/s

30、alinity(T-S)diagramsofzonalsectionsinthesubtropicsat20Sand30S(Fig.2)inthethreeoceansrevealthattheinterioroftheSPcannotbecharacterizedbyasingleCentralWaterlineasinthesouthernIndianandAtlanticOceans,butshowsmorescatter,mostpronouncedatabout26kgmAsup-3A.ThesouthernIndianandAtlanticOceansarequitesimilar

31、intheirT/Sdistributionsoverthedensityrange26-27kgmAsup-3A,whichmatchesalsothewesternSPcharacteristic.Towardtheeast,however,theSPisconsiderablyfresherandcolderonisopycnalsthantheothertwooceans.Toinvestigatethisfeaturewerecallthemechanismsresponsibleforthetransformationofpropertiesofthemixedlayerandth

32、ewaythemodifiedpropertiesaretransferredintotheinterior(Fig.3).Themixedlayerisdominatedbymixingonvarioustimeandspacescales(see,e.g.,Woods1985).Wateradvectednearthesurfacefromotheroceanregions,suchasthefresherwaterfromtheACCintheSPorrainwater,israpidlyblendedintothemixedlayerandchangeitsproperties.The

33、interiorconnectionwiththemixedlayer,theoutcrop,migratesmeridionallythroughtheseasonalcycleofair-seaexchange,polewardinsummerandequatorwardinwinter.Thismovementisaccompaniedbyaseasonalstratificationunderneaththemixedlayer,theseasonalthermocline.Animportantcontrolsurfaceinthermocline-mixedlayersystemi

34、sthebaseofthedeepestmixedlayer,usuallyfoundinlatewinter.Mostdramaticchangesinthedepthofthemixedlayerbaseusuallyoccurbetweenlatewinterandearlyspring.Thedepthchangetrapswinterpropertiesintheseasonalthermoclineandanetfluxfrommixedlayerintothermoclineoccurs(Stommel1979;Woods1985;Cushman-Roisin1987).Howe

35、ver,exchangeoccursyear-roundandcanhavebothdirections:fluxoutofthemixedlayer(subduction)andintothemixedlayer(obduction;QiuandHuang1995).Thedominantventilationtimescalesofthemixedlayerareseasonal,excludingpossiblelonger-termchangesinthemixedlayertopographyandforcing.Theinterior/thermoclineventilationt

36、imescalesdependonthevolumeofneighboringisopycnalsandtheannualmeansubductionrateintotherespectiveisopycnals.Ventilationtimesofthepermanentthermoclinearelargerthanayear,uptotheorderofdecades.Large-scaleflowinthemixedlayeristhesumofgeostrophicandageostrophiccomponents(e.g.,Wijffelsetal.1994).Theageostr

37、ophiccomponent,mainlytheEkmancurrent,dominatesnearthesurfacebutvanisheswithdepthwherethegeostrophiccomponentgainimportance.TheverticalintegraloftheEkmancurrent,theEkmantransport,constitutestheupperbranchoftheSTCoverlargepartsofthemidlatitudesubtropicalgyres.Atlowlatitudesaninteriorgeostrophicreturnf

38、lowhasalsobeendocumented(Wyrtki1981).AdirectestimateoftheEkmancurrentsandassociatedtransportsispossiblefromacombinationofhydrographicandvelocitymeasurements(see,e.g.,Wijffelsetal.1994).However,ifoneisonlyinterestedintheverticalintegratedtransportcomponents,theycanbederivedfromthemeridionalandzonalwi

39、ndstress(e.g.,Gill1982).Incontrasttothemixedlayer,thethermoclineisdominatedbylateral/isopycnaltransportofproperties,ratherweakcross-isopycnalmixing,andgeostrophicflow.SurfaceforcingandmixedlayerdynamicsWatermasstransformationoccursatboundariesthroughexchangeprocessesorintheinteriorthroughmixing.Mixe

40、dlayerwaterisconstantlytransformedthroughair-seainteraction,lateraladvectioninthemixedlayer,andentrainmentatthemixedlayerbase.StrongestadvectioninthemixedlayeroccursnearthesurfacebyEkmanflow.OverlargepartsofthesubtropicalgyresthewindfieldispredominatelyzonalandconsequentlytheEkmantransportismeridion

41、al(Fig.4a).InthecontextoftheSTC,thezeromeridionalEkmantransportline,locatedintheSPatabout30S(Fig.4a),istheseparatorbetweenhigher-andlower-latitudeoriginofthesurfacewatersparticipatingintheSTC.ThezeromeridionalEkmantransportlinecoincideswithasurfacedensityanomalyofabout25kgmAsup-3A(Fig.4b).Overonesea

42、sonalcycle(oneyear)therelativepositionbetweendensityandzeromeridionalEkmantransportisfairlyfixedintheeastwhileitismorevariableinthewest,changingintheTasmanSeabetween30Sinsummerand40Sinwinter(notshownhere).Thereverseistruefortheseasonalmovementofthesurfaceoutcropdensity(notshownhere):Inthewestitfollo

43、wsthemovementofthezeromeridionalEkmantransport(CkgmAsup-3人)whileintheeastvariabilityishigher(0.5kgMAsup3A).AlthoughthemeridionalEkmantransportdominatesoverlargepartsoftheSP,thezonalEkmantransportplaysaroleintheeasternboundaryupwellingregion.Itadvectsrelativelycoldandsalinewaterfromtheupwellingregion

44、andexplainsthehomogeneousandrelativehighsurfacedensityintheeasternsubtropics(Fig.4b).Oceanheatloss(Fig.4c)isintenseinthewesternboundarycurrentregionandintheTasmanSea.Here,warmtropicalwatersareadvectedpolewardintoregionsunderlyingacolderatmosphere.Highevaporationleadingtohighlatentandsensibleheatloss

45、isaconsequence.iand50Sfromabout20*o80WisasignificantfeaturerelatedtothenorthwardadvectionoffreshandcoldwaterthroughEkmantransportfromthesouthaswellastoapositivefreshwaterflux.Bothadvectionandthepositivefresh-waterfluxpromotetheformationofashallowbarrierlayerinsummer,blockingtheverticalheatexchange,a

46、ndsurfacewaterswarmmoreintensely.Highinterannualvariabilityoftheseasurfacetemperatureinsummerhasbeenobservedinthisregion(A.Montecinos2002,personalcommunication),whichispossiblyrelatedtothevariabilityinbarrier-layerintensity.Thebarrierlayeriserodedinautumn/winterthroughconvectiveoverturningdrivenbyhe

47、atloss.Apositivefreshwaterfluxcanbefoundsouthof30S(Fig.4d)andisconnectedwiththewesternequatorialPacificthroughtheSouthPacificconvergencezone(SPCZ).TheSPCZisaresultofconvergentflowaroundtheIndonesianlowandhighpressureovertheeasternsubtropicalSouthPacific.ThesurfacepatternofEkmantransportaswellasheata

48、ndfreshwaterfluxessuggeststhattheupperbranchoftheSTCcanbesplitintotwotransformationregions:Oneisforwaterdenserthanabout25kgmAsup-3Athatistransformedsouthof30S.Thisbranchwillbediscussedbelowinmoredetail.Thesecondbranchisforwaterlessdensethan25kgmAsup-3Athathasitssourceintheequatorialupwelling.Heremix

49、edlayerwateristransformedthroughthenegativefreshwaterfluxintheeastandthepositivefreshwaterfluxinthewest.Wewillnotdiscussthisbranchindetail.ToillustratehowthewaterparcelsbehaveintheEkmanlayer,trajectorieswerecalculatedforparticlesreleasedat5and53r(Fig.4e).Theaverageoftheuppertwolayervelocitiesfromthe

50、SODAanalysiswasused.TheflowpatternsareoverlargepartsasonewouldexpectfromtheEkmanlayertransport(Fig.4a).Thetrajectoriesareorientedmeridionallyandconvergeat30S.Tworegionsarenotreachedbyparticles:Inthesouthwest,westofNewZealand,particleshavetheiroriginfartherwest,southofAustralia.Thisisinagreementwithw

51、hatweseefromtheinteriorpropertiessuggestingwesternPacificwatertobesimilartothesouthernIndianOceanwater(Fig.2).Theotherexceptionalregionisbetween10and30SintheeasternSP.Themixedlayerhereispopulatedthroughparticlesthatoriginatefromtheeasternboundaryupwelling.FromtheEkmantransportdivergencethemeanvertic

52、alpumpingtermwasderived(Fig.4f).MoreorlessthewholegyreisdominatedbyEkmanpumping.ExceptionsaretheeasternboundaryupwellingregionandundertheSPCZnorthof20S.Ingeneral,EkmanpumpingisstrongernorthofthezeromeridionalEkmantransportline.ExchangesbetweenmixedlayerandthermoclineThemixedlayerisnotonlymodifiedthr

53、oughair-seaexchangeandadvection,butalsothroughthenetexportofwaterthroughsubductionatthebaseofthemixedlayer(Fig.3).EarlierSPstudies(deSzoeke1987;HuangandQiu1998;KarstensenandQuadfasel2002)haveshownthatinourregionofinterest,southof30S,thesubtropicalgyreisdominatedbysubduction.Consequentlyweconsiderint

54、hefollowingonlythenetexport.SubductionintheSPhasbeenanalyzedbydeSzoeke(1987)basedontheclassicalLuytenetal.(1983)model,whichaccountsforanEkman-pumping-drivensubductiononly(cf.Fig.4f).Laterstudiesconsideredtheseasonalmixedlayervariability(HuangandQiu1998;KarstensenandQuadfasel2002).However,fordensitya

55、nomaliessmallerthan26.6kgmAsup-3人transportsaresimilarinallpublicationsandoforder25Sv(Sv=10Asup6AmAsup3AsAsup-1A).-3人,twosubductionregionsareidentified.BothincorporateequatorialupwellingaswellaswaterfromsouthofthezeromeridionalEkmantransportline.IntheTasmanSea,inthewest,waterwithanearlyconstantsalini

56、tyof35.5andtemperaturesbetween15and25subducted.PartofthewaterhasbeencalledSouthPacificSubtropicalModeWater(RoemmichandCornuelle1992)althoughSouthPacificWesternSubtropicalModeWater(SPWSTMW)appearstobemoreappropriatetodistinguishitfromitseasterncounterpart.ThesubductedwatersdenserthanSPWSTMWresembleth

57、eT-SpropertiesoftheothertwoSouthernHemispheregyres(Fig.2).WithinthemodewaterdensityrangebutintheeasternSP,ventilationoccursoveramuchwiderrangeofsalinitiesfrom34to36.5andtemperaturesfrom10o25C,buttheytendtocompensateindensity.Notetheweaksurfacedensitygradientatthesurface(Fig.4b).Watersubductedinthisr

58、egionhasbeentermedSouthPacificEasternSubtropicalModeWater(SPESTMW;HanawaandTalley2001;WongandJohnson2003)and,asitswesterncounterpart,incorporatesequatorialandsouthernsourcewaters.Last,athirdsubductionregionislocatedatthesouthernrimoftheSPsubtropicalgyre.Here,mixedlayerwaterwithcharacteristicsinbetwe

59、enwesternandeasternwaterissubductedand,aswillbeshownbelow,modifiestheinteriorpropertiesthroughlateraldiffusion.Foreachregionwestern(S1),eastern(S2),andsouthern(S3)(Fig.6),theannualmeansubductionrate(SAsubannA)wasevaluatedfromananalysisoftheverticalvelocitiesatthebaseofthewintermixedlayer(H)(Marshall

60、etal.1993):SAsubannA=-wAsub屮-uAsub屮?H.isH).Twocontributionsmakeuptheannualmeansubduction:1)thecorrectedEkmanpumpingterm(-WAsubHA),whichincorporatesacorrectionforthemeridionalbarotropicforcingofthemixedlayerthroughthewind(Williams1989),and2)thecomponentofthehorizontalgeostrophicflowperpendiculartothe

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论