版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、FormationoftheSouthPacificShallowSalinityMinimum:ASouthernOceanPathwaytotheTropicalPacificIntheeasternSouthPacificOcean,atadepthofabout200m,asalinityminimumisfound.Thisminimumisassociatedwithaparticularwatermass,theShallowSalinityMinimumWater(SSMW).SSMWoutcropsinafreshtongue(SAsubminA)centeredatabou
2、t45S.2sAsup-1a.-3人).Thetransformedwaterturnsnorthwardwiththegyrecirculationandcontributestothehydrographicstructureofthegyrefarthernorth.BecausetheSouthPacificprovidesmostofthesourcewatersthatupwellalongtheequatorialPacific,variabilityinSouthPacifichydrographymayinfluenceequatorialPacifichydrography
3、.Becauseone-halfofthetransformationisfoundtobecontrolledthroughEkmantransport,variabilityinwindforcingatthesouthernrimofthesubtropicalgyremaybeasourceforvariabilityoftheequatorialPacific.(ProQuestInformationandLearning:.denotesformulaeomitted.)IntroductionThetropical/extratropicalexchangeofwatercanb
4、eviewedasameridional-verticalorsubtropicalcell(STC)drivenbysubductionandupwelling,whichareconnectedviaEkmantransportandinteriorflow.Intheextratropicswaterissubductedfromthemixedlayerandflowsequatorwardininteriorwind-drivenpathwaysandwesternboundarycurrents.Neartheequatorthiswaterupwellsbackintothemi
5、xedlayerandistransportedpolewardtothesubductionsitesthroughthemeridionalcomponentoftheEkmantransportseeSchottetal.(2004)foranSTCreview.STCshavebeenidentifiedinalloceansusingobservationaldata(e.g.,JohnsonandMcPhaden1999;Schottetal.2002;Zhangetal.2003)andmodels(e.g.,McCrearyandLu1994;Rothsteinetal.199
6、8).OneinterestinstudyingtheSTCsistheirpotentialinvolvementinlow-frequencyclimatevariabilityoftheocean-atmospheresystem,becausebothupwellingandsubductionarecontrolledthroughair-seaexchangeofmomentum,heat,andfreshwater.InparticularthevariabilityofthePacificOceanSTCisofimportance,becauseitmayberelatedt
7、oElNi?o-SouthernOscillation(ENSO)withitsfar-reachingsocioeconomicimpacts.Pacificvariabilityhasbeendecomposedintointerannualandinterdecadalvariability(Zhangetal.1997).InterannualvariabilityisusuallyassociatedwiththeENSOphenomenonandmaybeexplainedthroughatmosphere-oceaninterplayneartheequator.Decadalv
8、ariability,however,couldbetheresultofvariabilitythatisgeneratedintheextratropicaloceanandsubsequentlyadvectedtotheequator.Twomechanismshavebeenproposedtogeneratevariabilitybasedontemperature(T)andtransport(v).Kleemanetal.(1999)proposedamodelsolelybasedonfluctuationsinSTCtransport,thatis,withoutfluct
9、uationsinthetemperaturefield(vT).Fluctuationsintransportgeneratesea-surfacetemperaturefluctuationsthatcouldfeedbackontheatmosphericcirculation.Observationalevidencefortransportfluctuationsinthenear-equatorialflowhasbeenpresentedby,forexample,McPhadenandZhang(2002)andMeinenetal.(2001).GuandPhilander(
10、1997)proposedamechanismbasedontheadvectionoftemperatureanomalieswithanaverageflowfield(vT).Subductedtemperatureanomaliesintheextratropicsappearwithatimelagattheequator.TheirupwellingcausestemperatureanomaliestoappearintheTropicsthatfeedbackontotheatmosphericmeridionalcirculation.Theappearanceofawarm
11、anomalyalongtheequatorstrengthenstheextratropicalwindand,throughanincreaseofevaporation,introducesacoldanomalyintheextratropics.Thesubductionofsuchacoldanomalythenappearswithatimelagalongtheequatorwhereitsupwellinginitiatesacoldanomalythere.However,thepersistenceoftemperatureanomaliessubductedintoth
12、esubtropicalgyreiscurrentlyunderdebate.Hindcastrunsofcoupledocean-atmospheremodelssuggestthatequatorialPacificisothermaldepthvariabilitymaybegeneratedbythelocalwindstress(andEkmanpumping)variabilityattheequatorratherthanfromanomaliesofextratropicalorigin(Schneideretal.1999).InparticularfortheNorthPa
13、cificlittlecouplingbetweenTropicsandextratropicswasfound.However,YeagerandLarge(2004)identifiedsea-surfacetemperaturevariabilityalongtheequatorgeneratedthroughisopycnaladvectionofnotonlytemperaturebuttemperature/salinity(T/S)anomalies.Theyanalyzedoutputofanoceanmodelforcedwith40yearsofrealisticsurfa
14、cefluxes.Theirworkemphasizestheroleofbothheatandfreshwateranomaliesindecadalvariability.McCrearyandLu(1994)showedthatthermoclinewatermovingequatorwardoriginatesfromtheeastandpolewardsideofthesubtropicalgyres.ThissuggestsfortheSouthPacific(SP)thattheSouthernOcean(SO)canplayaroleinventilatingthePacifi
15、cequatorialthermocline(Toggweileretal.1991;Johnson2001).AprominentexchangepathfromtheSOtowardtheequatorinallSouthernHemisphereoceansisthefreshtongueofAntarcticIntermediateWater(AAIW).AAIWhasitsorigininthesubductionofpolarsurfacewaters(see,e.g.,Molinelli1978)andspreadsatthebaseofthesubtropicalgyres,a
16、tdepthsbetween600and1000m.However,withacoredensityanomalyofabout27.2kgmAsup-3A,AAIWliesbelowthewaterthatupwellsalongthePacificequator.UpwellingalongthePacificequatoris,rather,fedinthedensityrangeofwatersadvectedintheEquatorialUndercurrent(EUC)andthesubsurfacecountercurrents(SCC)(Roweetal.2000),thesu
17、bsurfacepathwaysfromwesttoeast(anddeepandshallow)alongtheequator.TheequatorialPacificisfedbyabout60%-3人(JohnsonandMcPhaden1999;Rodgersetal.2003).AsecondfreshtongueisfoundaboveAAIWintheinteriorofthesoutheastSP(atabout26kgmAsup-3A;seeFig.1)namedShallowSalinityMinimumWater(SSMW;Reid1973;TsuchiyaandTall
18、ey1996)orEasternSouthPacificIntermediateWater(EmeryandMeincke1986;Schneideretal.2003).SSMWisfoundinbothhemispheres.Itsformationhasbeenexplainedthroughthesinkingofsubantarcticsurfacewatersbelowhigher-salinitywaters(e.g.,Reid1973).Consequentlyoneexpectsacorrespondingsignatureintheseasurfacesalinitywhe
19、reSSMWissubducted.NorthPacificsurfacewatersfreshennorthofthesubtropicalgyreandalongtheeasternboundary(Fig.1)sothattheconceptualmodelforSSMWformationholdshere.IntheSP,however,alocalmeridionalfreshtongueislocatedatabout45.Consequently,asimplenorthwardtransferoffreshsurfacewaterwithsubsequentsubduction
20、cannotexplaintheformationofSSMWintheSPentirely.SSMWoutcropsinafreshsurfacetongue(SAsubminA)(seeFig.1).TheshapeofSAsubminApromptedanumberofinvestigatorstoinferawestwardflowatthesouthernrimoftheSPsubtropicalgyre(seeDeacon1977forareview).Suchaflow,incombinationwithcoastalfresh-waterinputandapositivepre
21、cipitation-evaporationbalance,wasthoughttogeneratethesurfacesalinitypatternwithlowestsalinitiesintheeast(Davilaetal.2002;Schneideretal.2003).However,aclearsignalofwestwardflowbetweentheeastward-flowingsubtropicalgyreandtheeastward-flowingextensionoftheACCwasneverdetected.NeshybaandFonseca(1980)suspe
22、ctedtransienteddiescontributedtothewestwardtransportbutdatacoveragewastoosparsetoprovethisidea.InthispaperwestudywatermasstransformationinthesouthernpartoftheSPsubtropicalgyretoexplaintheformationofSAsubmnandSSMW.Afterintroducingthedata,transformationmechanismsformixedlayerandthermoclinewatersaredis
23、cussed.Azonalmixedlayerbudgetisusedtoquantifytheimportanceofair-seaexchangeandadvection.Thentheroleofdiffusioninthewatermasstransformationisdiscussed.TheformationofSAsubminAisexplainedasanadvectivefeature.Last,variabilityofthewatermasstransformationanditsrelationtodecadalvariabilityofthehydrographic
24、structureoftheSPandEquatorialPacificarediscussed.DataTheoceansurfaceandinteriordataproductsusedinthisstudyaremainlythe1990-99averagetemperature,salinity,andvelocityfieldsfromthebeta-7versionofthesimpleoceandataassimilation(SODA)analysis(Cartonetal.2000a,b).SODAinvolvesanoptimalinterpolationassimilat
25、ionofdatainanumericalmodel(theModularOceanModelMOM-2,GFDL,Princeton,NewJersey).Seasurfacetemperature,altimeterseasurfaceheight,andtemperatureandsalinityprofiledataareassimilated.Themodeldomaincoversalloceansbetween60S/Nwithahorizontalresolutionof1xiinlatitude/longitudeinthesubtropics,0.45xiintheTrop
26、ics.Themodelisoptimizedforphysicsoftheupperocean;14ofits20verticallevelsplacedintheupper500m.WewilltreattheSODAanalysisfieldsasupper-oceanclimatologies.Surfacefluxmomentum,evaporation,andprecipitationfieldsaretakenfromtheNationalCentersforEnvironmentalPrediction(NCEP)-NationalCenterforAtmosphericRes
27、earch(NCAR)reanalysis(Kistleretal.2001),whichwasalsousedtogenerateorforcetheSODAanalysis(Cartonetal.2000b).ComparisonstudiesbetweenNCEP-NCARreanalysisdataanddirectobservations(e.g.,Smithetal.2001)foundtheNCEPdatatooverestimatefluxes(latentandsensibleheat)byabout20WmAsup-2a.Thisintroducesanerrorforth
28、enetheatfluxaswellasforthefreshwaterflux(precipitation-evaporationbalance)vialatentheat.Wedecidedtouseboththeoriginaldata(NCEP)andaversionreducedby20WmAsup-2A(NCEP-20W)forthecalculations.Forcomparison,theSouthamptonOceanographicCenter(SOC)air-seafluxfields(Joseyetal.1998;GristandJosey2003)aswellasth
29、edaSilvaetal.(1994a,b)climatologyareused.Botharebasedonobservationaldataandbothclimatologiesareconstrainedviaalinearinverseanalysisusinghydrographicoceanheattransports.Upper-layerhydrographyanddynamicsThehydrographicstructureoftheSPsubtropicalgyreiscomplexincomparisonwiththeotheroceans.Temperature/s
30、alinity(T-S)diagramsofzonalsectionsinthesubtropicsat20Sand30S(Fig.2)inthethreeoceansrevealthattheinterioroftheSPcannotbecharacterizedbyasingleCentralWaterlineasinthesouthernIndianandAtlanticOceans,butshowsmorescatter,mostpronouncedatabout26kgmAsup-3A.ThesouthernIndianandAtlanticOceansarequitesimilar
31、intheirT/Sdistributionsoverthedensityrange26-27kgmAsup-3A,whichmatchesalsothewesternSPcharacteristic.Towardtheeast,however,theSPisconsiderablyfresherandcolderonisopycnalsthantheothertwooceans.Toinvestigatethisfeaturewerecallthemechanismsresponsibleforthetransformationofpropertiesofthemixedlayerandth
32、ewaythemodifiedpropertiesaretransferredintotheinterior(Fig.3).Themixedlayerisdominatedbymixingonvarioustimeandspacescales(see,e.g.,Woods1985).Wateradvectednearthesurfacefromotheroceanregions,suchasthefresherwaterfromtheACCintheSPorrainwater,israpidlyblendedintothemixedlayerandchangeitsproperties.The
33、interiorconnectionwiththemixedlayer,theoutcrop,migratesmeridionallythroughtheseasonalcycleofair-seaexchange,polewardinsummerandequatorwardinwinter.Thismovementisaccompaniedbyaseasonalstratificationunderneaththemixedlayer,theseasonalthermocline.Animportantcontrolsurfaceinthermocline-mixedlayersystemi
34、sthebaseofthedeepestmixedlayer,usuallyfoundinlatewinter.Mostdramaticchangesinthedepthofthemixedlayerbaseusuallyoccurbetweenlatewinterandearlyspring.Thedepthchangetrapswinterpropertiesintheseasonalthermoclineandanetfluxfrommixedlayerintothermoclineoccurs(Stommel1979;Woods1985;Cushman-Roisin1987).Howe
35、ver,exchangeoccursyear-roundandcanhavebothdirections:fluxoutofthemixedlayer(subduction)andintothemixedlayer(obduction;QiuandHuang1995).Thedominantventilationtimescalesofthemixedlayerareseasonal,excludingpossiblelonger-termchangesinthemixedlayertopographyandforcing.Theinterior/thermoclineventilationt
36、imescalesdependonthevolumeofneighboringisopycnalsandtheannualmeansubductionrateintotherespectiveisopycnals.Ventilationtimesofthepermanentthermoclinearelargerthanayear,uptotheorderofdecades.Large-scaleflowinthemixedlayeristhesumofgeostrophicandageostrophiccomponents(e.g.,Wijffelsetal.1994).Theageostr
37、ophiccomponent,mainlytheEkmancurrent,dominatesnearthesurfacebutvanisheswithdepthwherethegeostrophiccomponentgainimportance.TheverticalintegraloftheEkmancurrent,theEkmantransport,constitutestheupperbranchoftheSTCoverlargepartsofthemidlatitudesubtropicalgyres.Atlowlatitudesaninteriorgeostrophicreturnf
38、lowhasalsobeendocumented(Wyrtki1981).AdirectestimateoftheEkmancurrentsandassociatedtransportsispossiblefromacombinationofhydrographicandvelocitymeasurements(see,e.g.,Wijffelsetal.1994).However,ifoneisonlyinterestedintheverticalintegratedtransportcomponents,theycanbederivedfromthemeridionalandzonalwi
39、ndstress(e.g.,Gill1982).Incontrasttothemixedlayer,thethermoclineisdominatedbylateral/isopycnaltransportofproperties,ratherweakcross-isopycnalmixing,andgeostrophicflow.SurfaceforcingandmixedlayerdynamicsWatermasstransformationoccursatboundariesthroughexchangeprocessesorintheinteriorthroughmixing.Mixe
40、dlayerwaterisconstantlytransformedthroughair-seainteraction,lateraladvectioninthemixedlayer,andentrainmentatthemixedlayerbase.StrongestadvectioninthemixedlayeroccursnearthesurfacebyEkmanflow.OverlargepartsofthesubtropicalgyresthewindfieldispredominatelyzonalandconsequentlytheEkmantransportismeridion
41、al(Fig.4a).InthecontextoftheSTC,thezeromeridionalEkmantransportline,locatedintheSPatabout30S(Fig.4a),istheseparatorbetweenhigher-andlower-latitudeoriginofthesurfacewatersparticipatingintheSTC.ThezeromeridionalEkmantransportlinecoincideswithasurfacedensityanomalyofabout25kgmAsup-3A(Fig.4b).Overonesea
42、sonalcycle(oneyear)therelativepositionbetweendensityandzeromeridionalEkmantransportisfairlyfixedintheeastwhileitismorevariableinthewest,changingintheTasmanSeabetween30Sinsummerand40Sinwinter(notshownhere).Thereverseistruefortheseasonalmovementofthesurfaceoutcropdensity(notshownhere):Inthewestitfollo
43、wsthemovementofthezeromeridionalEkmantransport(CkgmAsup-3人)whileintheeastvariabilityishigher(0.5kgMAsup3A).AlthoughthemeridionalEkmantransportdominatesoverlargepartsoftheSP,thezonalEkmantransportplaysaroleintheeasternboundaryupwellingregion.Itadvectsrelativelycoldandsalinewaterfromtheupwellingregion
44、andexplainsthehomogeneousandrelativehighsurfacedensityintheeasternsubtropics(Fig.4b).Oceanheatloss(Fig.4c)isintenseinthewesternboundarycurrentregionandintheTasmanSea.Here,warmtropicalwatersareadvectedpolewardintoregionsunderlyingacolderatmosphere.Highevaporationleadingtohighlatentandsensibleheatloss
45、isaconsequence.iand50Sfromabout20*o80WisasignificantfeaturerelatedtothenorthwardadvectionoffreshandcoldwaterthroughEkmantransportfromthesouthaswellastoapositivefreshwaterflux.Bothadvectionandthepositivefresh-waterfluxpromotetheformationofashallowbarrierlayerinsummer,blockingtheverticalheatexchange,a
46、ndsurfacewaterswarmmoreintensely.Highinterannualvariabilityoftheseasurfacetemperatureinsummerhasbeenobservedinthisregion(A.Montecinos2002,personalcommunication),whichispossiblyrelatedtothevariabilityinbarrier-layerintensity.Thebarrierlayeriserodedinautumn/winterthroughconvectiveoverturningdrivenbyhe
47、atloss.Apositivefreshwaterfluxcanbefoundsouthof30S(Fig.4d)andisconnectedwiththewesternequatorialPacificthroughtheSouthPacificconvergencezone(SPCZ).TheSPCZisaresultofconvergentflowaroundtheIndonesianlowandhighpressureovertheeasternsubtropicalSouthPacific.ThesurfacepatternofEkmantransportaswellasheata
48、ndfreshwaterfluxessuggeststhattheupperbranchoftheSTCcanbesplitintotwotransformationregions:Oneisforwaterdenserthanabout25kgmAsup-3Athatistransformedsouthof30S.Thisbranchwillbediscussedbelowinmoredetail.Thesecondbranchisforwaterlessdensethan25kgmAsup-3Athathasitssourceintheequatorialupwelling.Heremix
49、edlayerwateristransformedthroughthenegativefreshwaterfluxintheeastandthepositivefreshwaterfluxinthewest.Wewillnotdiscussthisbranchindetail.ToillustratehowthewaterparcelsbehaveintheEkmanlayer,trajectorieswerecalculatedforparticlesreleasedat5and53r(Fig.4e).Theaverageoftheuppertwolayervelocitiesfromthe
50、SODAanalysiswasused.TheflowpatternsareoverlargepartsasonewouldexpectfromtheEkmanlayertransport(Fig.4a).Thetrajectoriesareorientedmeridionallyandconvergeat30S.Tworegionsarenotreachedbyparticles:Inthesouthwest,westofNewZealand,particleshavetheiroriginfartherwest,southofAustralia.Thisisinagreementwithw
51、hatweseefromtheinteriorpropertiessuggestingwesternPacificwatertobesimilartothesouthernIndianOceanwater(Fig.2).Theotherexceptionalregionisbetween10and30SintheeasternSP.Themixedlayerhereispopulatedthroughparticlesthatoriginatefromtheeasternboundaryupwelling.FromtheEkmantransportdivergencethemeanvertic
52、alpumpingtermwasderived(Fig.4f).MoreorlessthewholegyreisdominatedbyEkmanpumping.ExceptionsaretheeasternboundaryupwellingregionandundertheSPCZnorthof20S.Ingeneral,EkmanpumpingisstrongernorthofthezeromeridionalEkmantransportline.ExchangesbetweenmixedlayerandthermoclineThemixedlayerisnotonlymodifiedthr
53、oughair-seaexchangeandadvection,butalsothroughthenetexportofwaterthroughsubductionatthebaseofthemixedlayer(Fig.3).EarlierSPstudies(deSzoeke1987;HuangandQiu1998;KarstensenandQuadfasel2002)haveshownthatinourregionofinterest,southof30S,thesubtropicalgyreisdominatedbysubduction.Consequentlyweconsiderint
54、hefollowingonlythenetexport.SubductionintheSPhasbeenanalyzedbydeSzoeke(1987)basedontheclassicalLuytenetal.(1983)model,whichaccountsforanEkman-pumping-drivensubductiononly(cf.Fig.4f).Laterstudiesconsideredtheseasonalmixedlayervariability(HuangandQiu1998;KarstensenandQuadfasel2002).However,fordensitya
55、nomaliessmallerthan26.6kgmAsup-3人transportsaresimilarinallpublicationsandoforder25Sv(Sv=10Asup6AmAsup3AsAsup-1A).-3人,twosubductionregionsareidentified.BothincorporateequatorialupwellingaswellaswaterfromsouthofthezeromeridionalEkmantransportline.IntheTasmanSea,inthewest,waterwithanearlyconstantsalini
56、tyof35.5andtemperaturesbetween15and25subducted.PartofthewaterhasbeencalledSouthPacificSubtropicalModeWater(RoemmichandCornuelle1992)althoughSouthPacificWesternSubtropicalModeWater(SPWSTMW)appearstobemoreappropriatetodistinguishitfromitseasterncounterpart.ThesubductedwatersdenserthanSPWSTMWresembleth
57、eT-SpropertiesoftheothertwoSouthernHemispheregyres(Fig.2).WithinthemodewaterdensityrangebutintheeasternSP,ventilationoccursoveramuchwiderrangeofsalinitiesfrom34to36.5andtemperaturesfrom10o25C,buttheytendtocompensateindensity.Notetheweaksurfacedensitygradientatthesurface(Fig.4b).Watersubductedinthisr
58、egionhasbeentermedSouthPacificEasternSubtropicalModeWater(SPESTMW;HanawaandTalley2001;WongandJohnson2003)and,asitswesterncounterpart,incorporatesequatorialandsouthernsourcewaters.Last,athirdsubductionregionislocatedatthesouthernrimoftheSPsubtropicalgyre.Here,mixedlayerwaterwithcharacteristicsinbetwe
59、enwesternandeasternwaterissubductedand,aswillbeshownbelow,modifiestheinteriorpropertiesthroughlateraldiffusion.Foreachregionwestern(S1),eastern(S2),andsouthern(S3)(Fig.6),theannualmeansubductionrate(SAsubannA)wasevaluatedfromananalysisoftheverticalvelocitiesatthebaseofthewintermixedlayer(H)(Marshall
60、etal.1993):SAsubannA=-wAsub屮-uAsub屮?H.isH).Twocontributionsmakeuptheannualmeansubduction:1)thecorrectedEkmanpumpingterm(-WAsubHA),whichincorporatesacorrectionforthemeridionalbarotropicforcingofthemixedlayerthroughthewind(Williams1989),and2)thecomponentofthehorizontalgeostrophicflowperpendiculartothe
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 认识人民币小学数学教案
- 高中物理必修三教案6篇
- 幼师职业生涯规划书
- 食堂年终工作总结(19篇)
- 英文在职证明模版
- DB12-T 1061-2021 律师民事诉讼文书格式
- 2024-2025学年重庆乌江新高考协作体高三上学期二调生物试题及答案
- 上海市县(2024年-2025年小学五年级语文)人教版开学考试(下学期)试卷及答案
- 五年级数学(小数乘法)计算题专项练习及答案汇编
- 荆楚理工学院《软件测试》2022-2023学年期末试卷
- 园林专业大学生职业生涯规划
- 第四章 学前儿童记忆的发展
- 胰岛素自身免疫综合征个案护理
- 对数的运算完整版本
- 选煤企业安全生产标准化课件
- 国家开放大学儿童发展问题的咨询与辅导形考周测验三周-周参考答案
- 就业引航筑梦未来
- 电子信息工程专业大学生生涯发展展示
- 生猪买卖合同
- 跨境电商营销(第2版 慕课版)教案 项目五 社会化媒体营销
- 【年产5000吨氯化苯的工艺设计11000字(论文)】
评论
0/150
提交评论