运输问题模型_第1页
运输问题模型_第2页
运输问题模型_第3页
运输问题模型_第4页
运输问题模型_第5页
已阅读5页,还剩55页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、运输问题模型二0一0年四月1运输问题的一般描述设某种物资有m个产地A1,A2,Am,和n个销地B1,B2,Bn,其中Ai的产量为ai,Bj的销量为bj,产地Ai运往销地Bj的单位运价Cij,i=1,2,m;j=1,2,n.求尽可能满足销地需求且总费用最小的运输方案。2运输问题的数学模型可以分以下3种情况讨论:1. 产销平衡问题2. 销大于产问题产大于销问题解:设产地Ai运往销地Bj的运量为31.产销平衡问题的数学模型产销平衡时,各个产地的物资总和正好满足所有销地的需求,运输问题的数学模型为42. 销大于产问题的数学模型销大于产时,各个销地的需求不一定能够得到满足,运输问题的数学模型为52. 产

2、大于销问题的数学模型销大于产时,各个销地的需求一定能够得到满足,但各个产地的物资不一定全部运走。运输问题的数学模型为6运输问题本质是一个线性规划问题运输问题变量比较多,系数矩阵为0-1矩阵,其中大部分元素为零。计算运输问题我们有比单纯形法更好的专门求解运输问题的算法。7产销平衡运输问题的求解定理 产销平衡运输问题一定存在最优解 。8产销平衡运输问题的Lingo模型MODEL:sets:row/1.m/:a;arrange/1.n/:b;link(row,arrange):c,x;endsetsdata:a=a(1) a(2) a(m);b=b(1) b(2) b(n);9C=c(1,1) c(

3、1,2) c(1,n), c(2,1) c(2,2) c(2,n), c(m,1) c(m,2) c(m,n);enddataOBJmin=sum(link(i,j):c(i,j)*x(i,j);for(row(i):sum(arrange(j):x(i,j)=a(i););for(arrange(j):sum(row(i):x(i,j)=b(j););for(link(i,j):x(i,j)=0;);END10产销不平衡运输问题也有类似的Lingo模型11产销平衡运输问题的初始解1. 西北角法在运价表的西北角选择运量和销量中的较小数作为运量(初始基变量),每确定一个初始基变量后,划去需求变成

4、零的剩余列元素或划去运量变成零的剩余行元素。121314151617填上x33=1后,自然少去一列(第3列),这时不要再去掉第3行。注意到每填一个数据恰好减少一行或一列。1819总共填写m+n个数据填上去的m+n个数据为基变量20产销平衡运输问题的初始解2. 最小元素法选择运价表中最小运价,运量和销量中的较小数作为运量(初始基变量),每确定一个初始基变量后,划去需求变成零的剩余列元素或划去运量变成零的剩余行元素。212223242526填上x14=4后,第4列自然被去掉记住每填一个数据减少一行或一列。27283. 位势法求检验数对每个基变量xij,计算ui和vj,使 ui+vj=cij 其中u

5、1=029303132再计算非基变量检验数ij=cij-(ui+vj)333411=-4 x11每增加一个单位,目标函数可以减少4个单位。目标可以减少,说明当前解不是最优解35闭回路法调整选x11进基,找到闭回路 x11 x14 4- x21 x24 2+ 3-36闭回路法调整为了保证所有xij非负,x11最多增加3。取x11=3 x11 +3 x14 4-3 x21 x24 2+3 3-33738重新计算检验数39404122=-1 x22每增加一个单位,目标函数可以减少1个单位。目标可以减少,说明当前解不是最优解42闭回路法调整选x22进基,找到闭回路 x12 5- x14 1 + x22

6、 + x24 5- 43X22最多增加5 x12 5-5 x14 1 +5 x22 + 5 x24 5-5 44X22进基,x12和x24经过调整同时变成零。但是要注意只有一个变量出基。例如:令x12出基得调整后的运输表为:4546重新计算检验数47484950所有非基变量检验数均非负,当前解为最优解最优解为: X11*=3,x14*=6,x22*=5,x32*=3,x33*=4,其余xij*=0最优目标值为Z*=32+67+53+34+42=8351运输问题数学模型的应用实例设某制造企业根据合同要求,从当年起需连续三年在年末提供3套型号规格相同的大型设备,已知该厂的生产能力及生产成本如下表所

7、示:52生产能力与生产成本表年度 正常生产可 加班生产可 正常生产 完成设备数 完成设备数 成本(万)第一年 2 3 500第二年 4 2 600 第三年 1 3 550 设加班生产情况下每套设备成本比正常生产时高70万元,每套设备不及时交货积压一年的维护费用为40万元。该厂现库存有2套设备,希望第三年末完成合同要求后还能储存1台设备,问如何安排生产,才能使总成本最低。53解:设xj为初始存货用于第j年交货的设备数 yij为第i年正常生产用于第j年交货的设备数, zij为第i年加班生产用于第j年交货的设备数, cj为初始库存设备第j年交货时每台设备维护费, aij为第i年正常生产到第j年交货的

8、每台设备成本费, bij为第i年加班生产到第j年交货的每台设备成本费。上述生产计划问题的数学模型为:54记A为正常生产时的费用矩阵55B为加班生产时的费用矩阵C=(0,40 ,80)56生产计划问题的Lingo模型为MODEL:sets:row/1,2,3/;arrange/1,2,3/:c,x;link(row,arrange):a,b,y,z;Endsetsdata:c=0,40,80;a=500,540,580,0,600,640,0,0,550;b=570,610,650,0,670,710,0,0,620;enddata57OBJmin=sum(arrange(j):c(j)*x(j)+sum(link(i,j):a(i,j)*y(i,j)+sum(link(i,j):b(i,j)*z(i,j);sum(arrange(j):x(j)=2;sum(arrange(j):y(1,j)=2;sum(arrange(j):z(1,j)=3;y(2,2)+y(2,3)=4; z(2,2)+z(2,3)=2; y(3,3)=1; z(3,3)=0;); for(link(i,j):y(i,j)=0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论