【知识点提纲】新教材 人教版 高中化学 选择性必修 第一册 知识点_第1页
【知识点提纲】新教材 人教版 高中化学 选择性必修 第一册 知识点_第2页
【知识点提纲】新教材 人教版 高中化学 选择性必修 第一册 知识点_第3页
【知识点提纲】新教材 人教版 高中化学 选择性必修 第一册 知识点_第4页
【知识点提纲】新教材 人教版 高中化学 选择性必修 第一册 知识点_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、人教版 高中化学 选择性必修 第一册 知识点 HYPERLINK /books/rjb/huaxue/pgzxzxbxd1c/002.htm 第一章 化学反应的热效应【重难点】:反应热与键能,热化学方程式的书写和反应热与键能【知识点】一、反应热、焓变 1反应热:当反应物和生成物的温度相同时,化学反应过程中所释放或吸收的热量,叫做化学反应的热效应,化学反应的热效应一般称为反应热。2.焓与焓变的含义 = 1 * GB3 焓的意义:焓是一个物理量,用来表示物质所具有的能量,符号为H,用焓的变化来描述与反应热有关的能量变化。 = 2 * GB3 焓变:表示反应产物的总焓与反应物的总焓之差,符号用H表示

2、。a、数学表达式:H =H(反应产物)-H(反应物)b、单位:kJ/mol或(kJmol1)c、意义:在一定条件下,可以通过焓变(H)来确定一个反应是吸热反应还是放热反应。 = 3 * GB3 影响焓变的因素a、发生变化的物质的焓变,在其他条件一定时与变化物质的物质的量成正比。b、焓变与反应物、生成物之间的温度、压强有关。c、物质在固态、液态、气态之间进行转换时也伴随能量的变化,所以焓变与物质的聚集状态有关。3、反应热与焓变的关系:H是化学反应在恒定压强下且不与外界进行电能、光能等其他能量的转化时的反应热,即恒压条件下进行的反应的反应热Q就是焓变。高中阶段二者通用。二、化学反应过程中的能量变化

3、 1化学反应过程中能量变化的表现形式化学反应过程中,不仅有物质的变化,还有能量的变化。这种能量的变化常以热能、电能、光能等形式表现出来。2、化学反应中的能量变化 = 1 * GB2 从键能的角度分析化学反应中能量的变化(微观角度)以1 mol H2与1 mol Cl2反应生成2 mol HCl时放出 kJ的热量为例,从微观角度解释化学反应过程中的能量变化。解答此反应过程的能量变化可表示如下:A、化学键断裂时需要吸收能量,吸收的总能量为679 kJ。B、化学键形成时需要释放能量释放的总能量为862 kJ。C、反应热的计算:862 kJ679 kJ183 kJ,即放出183 kJ的能量。显然,分析

4、结果与实验测得的该反应的反应热 kJmol1很接近(一般用实验数据来表示反应热)。【小结】1、化学反应过程中能量变化的微观本质是:化学键的断链和形成时的能量差别是化学反应伴随能量变化的本质原因。由键能求焓变的公式:H=E(反应物的总键能)- E(产物的总键能)2、H的正负和吸放热反应的关系 = 1 * GB3 放热反应:反应完成时,生成生成物释放的总能量大于反应物吸收的总能量。由于反应后放出热量(释放给环境)而使反应体系的能量降低,故H0或H为“”。 = 2 * GB3 吸热反应:反应完成时,生成物释放的总能量小于反应物吸收的总能量。由于反应后吸收环境热量而使反应体系的能量升高,故H0或H为“

5、”。(2)、从物质所具有的能量角度分析化学反应中能量的变化(宏观角度) = 1 * GB3 如果反应物所具有的总能量大于生成物所具有的总能量,那么由反应物转化成生成物时能量主要转变成热量形式放出,这是放热反应。反之,如果反应物所具有的总能量小于生成物所具有的总能量,反应物就需要吸收热量才能转化为生成物,这是吸热反应。(如下图) H0或H为“+”吸收热量H0或H为“”放出热量放热反应 吸热过程 = 2 * GB3 由物质的能量求焓变的公式:H= E(产物的总能量)- E(反应物的总能量)(3)放热反应和吸热反应的比较特别提醒比较H的大小时,要连同“”、“”包含在内,类似于数学上的正负数比较。如果

6、只比较反应放出热量的多少,则只须比较数值大小,与“”、“”无关。(4)常见的放热反应和吸热反应1放热反应:燃烧、中和反应、金属的氧化、金属与酸或水的反应、由不稳定物质转变为稳定物质的反应等。 2吸热反应:盐类的水解、C与CO2或H2O的反应、CaCO3的分解、Ba(OH)28H2O与NH4Cl的反应、由稳定物质转变成不稳定物质的反应等。特别提醒化学反应总体遵循“分吸合放”规律,即大多数分解反应吸热,大多数化合反应放热,且化学反应中吸热反应占少数,所以务必记住常见的吸热反应。放热反应或吸热反应必须属于化学变化。如醋酸的电离虽然要吸热,但不能称为吸热反应,只能称为吸热过程;同样,水蒸气转变成液态水

7、,也不能称为放热反应。 = 3 * GB3 不同化学反应发生的条件不同,有的常温下就可以发生,有的则需要加热。因此往往容易把在加热条件下进行的反应认为是吸热反应,而在常温下进行的反应认为是放热反应。其实两者之间无必然联系,常温下进行的反应可能是放热反应,如中和反应;也可能是吸热反应,如NH4Cl与Ba(OH)28H2O的反应。加热条件下进行的反应,可能是吸热反应,如CCO2 = 2CO;也可能是放热反应,如CO2 = CO2。两者的区别是放热反应撤去热源后仍能进行,吸热反应必须持续加热才能继续进行。由上可见,反应吸热还是放热与反应条件无关,而是由反应物总能量与生成物总能量的高低决定的。 三、热

8、化学方程式 1概念:能表示参加反应物质的量和反应热的关系的化学方程式,叫做热化学方程式。2表示意义:热化学方程式不仅表明了化学反应中的物质变化,也表明了化学反应中的能量变化。 3、热化学方程式与普通化学方程式的区别 化学方程式 热化学方程式 化学计量数 是整数,既可表示粒子个数,又可表示该物质的物质的量 既可以是整数,也可以是分数,只表示该物质的物质的量 状态 不要求注明 必须在化学式后注明 正负号及单位 无 必须注明 意义 表明了化学反应中的物质变化 不仅表明了化学反应中的物质变化,也表明了化学反应中的能量变化 4、书写热化学方程式的注意事项 = 1 * GB3 H只能写在标有反应物和生成物

9、状态的化学方程式的右边,并用“空格”隔开。若为放热反应,H为“”;若为吸热反应,H为“”。H的单位一般为kJmol1。 = 2 * GB3 注意反应物和产物的聚集状态不同,反应热数值不同。物质的气、液、固三态的变化与反应热的关系如下图,因此,必须注明物质的聚集状态(s、l、g)才能完整地体现出热化学方程式的意义。热化学方程式中不用标“”或“ = 3 * GB3 H的单位“kJmol1”的含义。并不是指每摩尔具体物质反应时伴随的能量变化是多少千焦,而是指给定形式的具体反应以各物质的化学计量数来计量其物质的量时伴随的能量变化。如2H2(g)O2(g)2H2O(g)H kJmol1中的反应热是指每摩

10、尔反应,放出的热量为 kJ。因此H与化学方程式的写法有关,如果化学计量数加倍,则H也要加倍。当反应逆向进行时,其反应热与正反应的反应热数值相等,符号相反。例如:已知H2(g)O2(g)H2O(l)H kJmol1,则2H2(g)O2(g)2H2O(l)H kJmol1;H2O(l)H2(g)O2(g) H kJmol1。四、中和热的测定与计算1中和热测定实验的注意事项整个实验过程中应把好两关:隔热关。如量热计保温层内隔热填充材料要填满;盖板上的两孔只需要正好使温度计和环形玻璃棒通过即可;倒入NaOH溶液要迅速,尽可能减少实验过程中的热量损失。准确关。如配制溶液的浓度要准确;NaOH溶液要新制;

11、量取溶液体积时读数要准确;对温度计的读数要读到最高点。2中和热的计算由50 mL molL1盐酸与50 mL molL1 NaOH溶液进行实验,根据所测结果,计算中和反应的中和热为:H kJmol1(C为生成溶液的比热容)特别提醒中和热的测量中碱稍过量的原因是保证酸能完全反应,计算时应以不足的酸作为计算标准。实验中使用的酸和碱不能是浓酸或浓碱,若用浓酸或浓碱,由于稀释过程中放出热量,会使测得的中和热数值偏高。3导致测定误差的因素求算出的中和热是否接近 kJmol1,取决于溶液的浓度、溶液的体积及温度的变化。引起中和热测定有较大误差的因素主要有:溶液浓度不准确;溶液量取不准确;隔热较差;室温太低

12、;温度未读取到最高点等。 HYPERLINK /books/rjb/huaxue/pgzxzxbxd1c/007.htm 第二章 化学反应速率与化学平衡一、化学反应速率1. 化学反应速率(v) 定义:用来衡量化学反应的快慢,单位时间内反应物或生成物的物质的量的变化 表示方法:单位时间内反应浓度的减少或生成物浓度的增加来表示 计算公式:v=c/t(:平均速率,c:浓度变化,t:时间)单位:mol/(Ls) 影响因素: 决定因素(内因):反应物的性质(决定因素) 条件因素(外因):反应所处的条件2.注意:(1)、参加反应的物质为固体和液体,由于压强的变化对浓度几乎无影响,可以认为反应速率不变(2)

13、、惰性气体对于速率的影响 恒温恒容时:充入惰性气体总压增大,但是各分压不变,各物质浓度不变反应速率不变恒温恒体时:充入惰性气体体积增大各反应物浓度减小反应速率减慢二、化学平衡(一)1.定义:化学平衡状态:一定条件下,当一个可逆反应进行到正逆反应速率相等时,更组成成分浓度不再改变,达到表面上静止的一种“平衡”,这就是这个反应所能达到的限度即化学平衡状态。2、化学平衡的特征逆(研究前提是可逆反应)等(同一物质的正逆反应速率相等) 动(动态平衡) 定(各物质的浓度与质量分数恒定) 变(条件改变,平衡发生变化) 3、判断平衡的依据(二)影响化学平衡移动的因素1、浓度对化学平衡移动的影响(1)影响规律:

14、在其他条件不变的情况下,增大反应物的浓度或减少生成物的浓度,都可以使平衡向正方向移动;增大生成物的浓度或减小反应物的浓度,都可以使平衡向逆方向移动(2)增加固体或纯液体的量,由于浓度不变,所以平衡_不移动_(3)在溶液中进行的反应,如果稀释溶液,反应物浓度_减小_,生成物浓度也_减小_, V正_减小_,V逆也_减小_,但是减小的程度不同,总的结果是化学平衡向反应方程式中化学计量数之和_大_的方向移动。2、温度对化学平衡移动的影响影响规律:在其他条件不变的情况下,温度升高会使化学平衡向着_吸热反应_方向移动,温度降低会使化学平衡向着_放热反应_方向移动。3、压强对化学平衡移动的影响影响规律:其他

15、条件不变时,增大压强,会使平衡向着_体积缩小_方向移动;减小压强,会使平衡向着_体积增大_方向移动。注意:(1)改变压强不能使无气态物质存在的化学平衡发生移动(2)气体减压或增压与溶液稀释或浓缩的化学平衡移动规律相似4.催化剂对化学平衡的影响:由于使用催化剂对正反应速率和逆反应速率影响的程度是等同的,所以平衡_不移动_。但是使用催化剂可以影响可逆反应达到平衡所需的_时间_。5.勒夏特列原理(平衡移动原理):如果改变影响平衡的条件之一(如温度,压强,浓度),平衡向着能够减弱这种改变的方向移动。三、化学平衡常数(一)定义:在一定温度下,当一个反应达到化学平衡时,_生成物浓度幂之积与反应物浓度幂之积

16、的比值是一个常数_比值。 符号:_K_(二)使用化学平衡常数K应注意的问题:1、表达式中各物质的浓度是_变化的浓度_,不是起始浓度也不是物质的量。2、K只与_温度(T)_有关,与反应物或生成物的浓度无关。3、反应物或生产物中有固体或纯液体存在时,由于其浓度是固定不变的,可以看做是“1”而不代入公式。4、稀溶液中进行的反应,如有水参加,水的浓度不必写在平衡关系式中。(三)化学平衡常数K的应用:1、化学平衡常数值的大小是可逆反应_进行程度_的标志。K值越大,说明平衡时_生成物_的浓度越大,它的_正向反应_进行的程度越大,即该反应进行得越_完全_,反应物转化率越_高_。反之,则相反。 一般地,K_1

17、05_时,该反应就进行得基本完全了。2、可以利用K值做标准,判断正在进行的可逆反应是否平衡及不平衡时向何方进行建立平衡。(Q:浓度积)Q_K:反应向正反应方向进行;Q_=_K:反应处于平衡状态 ;Q_K:反应向逆反应方向进行3、利用K值可判断反应的热效应若温度升高,K值增大,则正反应为_吸热_反应若温度升高,K值减小,则正反应为_放热_反应四、等效平衡1、概念:在一定条件下(定温、定容或定温、定压),只是起始加入情况不同的同一可逆反应达到平衡后,任何相同组分的百分含量均相同,这样的化学平衡互称为等效平衡。2、分类(1)定温,定容条件下的等效平衡第一类:对于反应前后气体分子数改变的可逆反应:必须

18、要保证化学计量数之比与原来相同;同时必须保证平衡式左右两边同一边的物质的量与原来相同。第二类:对于反应前后气体分子数不变的可逆反应:只要反应物的物质的量的比例与原来相同即可视为二者等效。(2)定温,定压的等效平衡只要保证可逆反应化学计量数之比相同即可视为等效平衡。五、化学反应进行的方向1、反应熵变与反应方向:(1)熵:物质的一个状态函数,用来描述体系的混乱度,符号为S. 单位:Jmol-1K-1 (2)体系趋向于有序转变为无序,导致体系的熵增加,这叫做熵增加原理,也是反应方向判断的依据。.(3)同一物质,在气态时熵值最大,液态时次之,固态时最小。即S(g)S(l)S(s) 2、反应方向判断依据

19、 在温度、压强一定的条件下,化学反应的判读依据为: H-TS0 反应能自发进行H-TS=0 反应达到平衡状态H-TS0 反应不能自发进行注意:(1)H为负,S为正时,任何温度反应都能自发进行 (2)H为正,S为负时,任何温度反应都不能自发进行 HYPERLINK /books/rjb/huaxue/pgzxzxbxd1c/015.htm 第三章 水溶液中的离子反应与平衡一、弱电解质的电离平衡1强、弱电解质(1)概念(2)与物质类别的关系强电解质主要包括强酸、强碱和大多数盐。弱电解质主要包括弱酸、弱碱、少数盐和水。(3)电离方程式的书写弱电解质a多元弱酸分步电离,且第一步电离程度远远大于第二步,

20、如H2CO3电离方程式:H2CO3HHCOeq oal(,3),HCOeq oal(,3)HCOeq oal(2,3)。b多元弱碱电离方程式一步写成,如Fe(OH)3电离方程式:Fe(OH)3Fe33OH。酸式盐a强酸的酸式盐完全电离,如NaHSO4电离方程式:NaHSO4=NaHSOeq oal(2,4)。b弱酸的酸式盐中酸式酸根不能完全电离,如NaHCO3电离方程式:NaHCO3=NaHCOeq oal(,3),HCOeq oal(,3)HCOeq oal(2,3)。2电离平衡的建立在一定条件(如温度、浓度等)下,当弱电解质分子电离成离子的速率和离子结合成弱电解质分子的速率相等时,电离过程

21、就达到平衡。平衡建立过程如图所示:3电离平衡的特征二、影响电离平衡的外界条件1温度:温度升高,电离平衡向右移动,电离程度增大。2浓度:稀释溶液,电离平衡向右移动,电离程度增大。3同离子效应:加入与弱电解质具有相同离子的强电解质,电离平衡向左移动,电离程度减小。4加入能与电离出的离子反应的物质:电离平衡向右移动,电离程度增大。考点2电离平衡常数1表达式(1)对于一元弱酸HA:HAHA,电离平衡常数Keq f(c(H)c(A),c(HA))。(2)对于一元弱碱BOH:BOHBOH,电离平衡常数Keq f(c(B)c(OH),c(BOH))。2特点(1)电离平衡常数只与温度有关,因电离是吸热过程,所

22、以升温,K值增大。(2)多元弱酸的各级电离平衡常数的大小关系是K1K2K3,故其酸性取决于第一步。3意义K值越大,说明弱电解质越易电离,其酸(碱)性越强。4影响因素考点3强、弱电解质的比较与判断一、强、弱电解质的比较以一元强酸(HA)与一元弱酸(HB)的比较为例。浓度均为0.01 molL1的强酸HA与弱酸HBpH均为2的强酸HA与弱酸HBpH或物质的量浓度2pHHApHHB0.01 molL1c(HA)HBHAHB体积相同时与过量的碱反应消耗碱的量HAHBHAHB体积相同时与过量活泼金属反应产生H2的量HAHBHAc(B)c(A)c(B)分别加入固体NaA、NaB后pH的变化HA:不变HB:

23、变大HA:不变HB:变大加水稀释10倍后3pHHApHHB2溶液的导电性HAHBHAHB水的电离程度HA1,则HA为弱酸方法2跟同浓度的盐酸比较导电性若导电性和盐酸相同,则为强酸;若比盐酸弱,则为弱酸方法3跟同浓度的盐酸比较和锌反应的快慢若反应速率相同,则为强酸;若比盐酸慢,则为弱酸2.从是否存在电离平衡的角度判断(1)从一定pH的HA溶液稀释前后pH的变化判断如将pH3的HA溶液稀释100倍后,再测其pH,若pH5,则为强酸,若pH7,则HA是弱酸。第二讲水的电离和溶液的酸碱性考点1水的电离1水的电离水是极弱的电解质,其电离方程式为2H2OH3OOH或H2OHOH。2水的离子积常数(1)表达

24、式:Kwc(H)c(OH)。室温下,Kw11014。(2)影响因素:只与温度有关,水的电离是吸热过程,升高温度,Kw增大。(3)适用范围:Kw不仅适用于纯水,也适用于稀的电解质水溶液。在任何水溶液中均存在H和OH,只要温度不变,Kw不变。3影响水的电离平衡的因素(1)升高温度,水的电离程度增大,Kw增大。(2)加入酸或碱,水的电离程度减小,Kw不变。(3)加入可水解的盐(如FeCl3、Na2CO3),水的电离程度增大,Kw不变。4外界条件对水的电离平衡的影响体系变化条件平衡移动方向Kw水的电离程度c(OH)c(H)酸逆不变减小减小增大碱逆不变减小增大减小可水解的盐Na2CO3正不变增大增大减小

25、NH4Cl正不变增大减小增大温度升温正增大增大增大增大降温逆减小减小减小减小其它,如加入Na正不变增大增大减小考点2溶液的酸碱性与pH一、溶液的酸碱性溶液的酸碱性取决于溶液中c(H)和c(OH)的相对大小。(用“”“”或“c(OH)c(H)c(OH)c(H)c(OH)二、溶液的pH1定义式:pHlg_c(H)。2溶液的酸碱性与pH的关系室温下:3测量(1)pH试纸法:取一小块试纸放在干燥洁净的玻璃片或表面皿上,用洁净干燥的玻璃棒蘸取待测溶液点在试纸的中央,变色后与标准比色卡对比,即可确定溶液的pH。(2)pH计测量法。三、常见溶液的pH计算1单一溶液的pH计算 强酸溶液,如HnA,设浓度为c

26、mol/L,c(H)nc mol/L,pHlg c(H)lg (nc)。强碱溶液(25 ),如B(OH)n,设浓度为c mol/L,c(H)eq f(1014,nc) mol/L,pHlg c(H)14lg (nc)。2混合溶液的pH计算(1)两种强酸混合:直接求出c(H)混,再据此求pH。c(H)混eq f(c1(H)V1c2(H)V2,V1V2)。(2)两种强碱混合:先求出c(OH)混,再据Kw求出c(H)混,最后求pH。c(OH)混eq f(c1(OH)V1c2(OH)V2,V1V2)。(3)强酸、强碱混合:先判断哪种物质过量,再由下式求出溶液中H或OH的浓度,最后求pH。c(H)混或c

27、(OH)混eq f(|c(H)酸V酸c(OH)碱V碱|,V酸V碱)。考点3酸碱中和滴定一、实验原理利用中和反应,用已知浓度的酸(或碱)来测定未知浓度的碱(或酸)的实验方法。二、常用酸碱指示剂及其变色范围指示剂变色范围的pH甲基橙4.4黄色酚酞10.0红色酸碱中和滴定中一般不用石蕊作指示剂,因为其变色范围大,颜色变化不明显。三、实验用品1仪器:酸式滴定管(如图A)、碱式滴定管(如图B)、滴定管夹、铁架台、锥形瓶。2试剂:标准液、待测液、指示剂、蒸馏水。3滴定管的选择试剂性质滴定管原因酸性、强氧化性酸式滴定管酸性和强氧化性物质易腐蚀橡胶碱性碱式滴定管碱性物质易腐蚀玻璃,致使玻璃活塞无法打开四、实验

28、操作(以标准盐酸滴定待测NaOH溶液为例)1滴定前的准备eq x(检漏)检查滴定管活塞是否漏水eq x(洗涤)先用蒸馏水“洗”,再用待装液“润洗”滴定管eq x(装、排)滴定管中“装”液至0刻度以上,并“排”气泡eq x(调、读)调整液面至0或0刻度以下,并读数eq x(注、加)将一定体积的碱液注入锥形瓶,并加指示剂酸式滴定管的查漏:向滴定管中装入一定体积的水,固定在滴定管夹上直立静置两分钟,观察有无水滴滴下,然后将活塞旋转180,再静置两分钟,观察有无水滴滴下,若均不漏水,滴定管即可使用。2滴定3终点判断当滴入最后一滴标准液,溶液由红色变为无色(酚酞作指示剂),且在半分钟内不恢复原色,视为滴

29、定终点并记录标准液的体积。滴定终点是指示剂颜色的突变点,不是恰好中和的点,也不是pH等于7的点。4数据处理按上述操作重复 23次,求出用去标准盐酸体积的平均值,根据c(NaOH)eq f(c(HCl)V(HCl),V(NaOH))计算。五、误差分析1原理依据原理c(标准)V(标准)c(待测)V(待测),所以c(待测)eq f(c(标准)V(标准),V(待测)),因c(标准)与V(待测)已确定,因此只要分析出不正确的操作引起V(标准)的变化,即分析出结果。V(标准)变大,则c(待测)偏高;V(标准)变小,则c(待测)偏低。2常见误差以标准酸溶液滴定未知浓度的碱溶液(酚酞作指示剂)为例,常见的因操

30、作不正确而引起的误差有步骤操作V(标准)c(待测)洗涤酸式滴定管未用标准酸溶液润洗变大偏高碱式滴定管未用待测溶液润洗变小偏低锥形瓶用待测溶液润洗变大偏高锥形瓶洗净后还留有蒸馏水不变无影响取液取碱液的滴定管开始有气泡,读数时气泡消失变小偏低滴定酸式滴定管滴定前有气泡,滴定终点时气泡消失变大偏高振荡锥形瓶时部分液体溅出变小偏低部分酸液滴在锥形瓶外变大偏高读数酸式滴定管滴定前读数正确,滴定后俯视读数(或前仰后俯)变小偏低酸式滴定管滴定前读数正确,滴定后仰视读数(或前俯后仰)变大偏高六、常用量器的读数方法1平视读数(如图1):实验室中用量筒、移液管或滴定管量取一定体积的液体,读取液体体积时,视线应与凹

31、液面最低点保持水平,视线与刻度的交点即为读数(即“凹液面定视线,视线定读数”)。2俯视读数(如图2):当用量筒测量液体的体积时,由于俯视视线向下倾斜,寻找切点的位置在凹液面的上侧,读数高于正确的刻度线位置,即读数偏大。3仰视读数(如图3):读数时,由于视线向上倾斜,寻找切点的位置在液面的下侧,因滴定管刻度标法与量筒不同,这样仰视读数偏大。第三讲盐类的水解考点1盐类的水解及其规律一、实质盐电离eq blcrc(avs4alco1(弱酸的阴离子结合H,弱碱的阳离子结合OH)生成弱电解质破坏了水的电离平衡水的电离程度增大c(H)c(OH)溶液呈碱性或酸性。二、特点三、规律有弱才水解,越弱越水解;谁强

32、显谁性,同强显中性。盐的类型强酸强碱盐强酸弱碱盐弱酸强碱盐实例NaCl、KNO3NH4Cl、Cu(NO3)2CH3COONa、Na2CO3是否水解否是是水解的离子NHeq oal(,4)、Cu2CH3COO、COeq oal(2,3)溶液的酸碱性中性酸性碱性溶液的pH (25 )pH7pH7四、水解方程式的书写1一般要求例如:NH4Cl的水解离子方程式为NHeq oal(,4)H2ONH3H2OH。2三种类型的盐的水解方程式的书写(1)多元弱酸盐的水解:分步进行,以第一步为主,一般只写第一步水解。例如:Na2CO3的水解离子方程式为COeq oal(2,3)H2OHCOeq oal(,3)OH

33、。(2)多元弱碱盐水解:方程式一步写完。例如:FeCl3的水解离子方程式为Fe33H2OFe(OH)33H。(3)有些阴、阳离子相互促进的水解:水解相互促进进行到底时,书写时要用“=”“”“”等。例如:NaHCO3与AlCl3混合溶液反应的离子方程式为Al33HCOeq oal(,3)=Al(OH)33CO2。考点2盐类水解的影响因素1内因弱酸阴离子、弱碱阳离子对应的酸、碱越弱,就越易发生水解。例如:酸性:CH3COOHH2CO3eq o(,sup12(决定),sdo4()相同条件下相同浓度的NaHCO3、CH3COONa溶液的pH大小关系为NaHCO3CH3COONa。2外因影响因素水解平衡

34、水解程度水解产生离子的浓度温度升高右移增大增大浓度增大右移减小增大减小(即稀释)右移增大减小外加酸碱酸弱碱阳离子水解程度减小碱弱酸阴离子水解程度减小考点3盐类水解的应用1盐类水解的应用应用举例判断溶液的酸碱性FeCl3溶液显酸性,原因是Fe33H2OFe(OH)33H判断酸性强弱NaX、NaY、NaZ三种盐pH分别为8、9、10,则酸性:HXHYHZ配制或贮存易水解的盐溶液配制CuSO4溶液时,加入少量H2SO4,防止Cu2水解;配制FeCl3溶液,加入少量盐酸;贮存Na2CO3溶液、Na2SiO3溶液不能用磨口玻璃塞胶体的制取制取Fe(OH)3胶体的离子方程式:Fe33H2Oeq o(=,s

35、up7()Fe(OH)3(胶体)3H物质的提纯除去MgCl2溶液中的Fe3,可加入MgO、镁粉、Mg(OH)2或 MgCO3泡沫灭火器的原理成分为NaHCO3与Al2(SO4)3,发生反应为Al33HCOeq oal(,3)=Al(OH)33CO2作净水剂明矾可作净水剂,原理为Al33H2O Al(OH)3(胶体)3H化肥的使用铵态氮肥与草木灰不得混用除锈剂NH4Cl与ZnCl2溶液可作焊接时的除锈剂2盐溶液蒸干时所得产物的判断(1)盐溶液水解生成难挥发性酸时,酸根阴离子易水解的强碱盐蒸干后一般得原物质,如CuSO4(aq)蒸干得CuSO4(s);Na2CO3(aq)蒸干得 Na2CO3(s)

36、。(2)盐溶液水解生成易挥发性酸时,蒸干灼烧后一般得对应的氧化物,如AlCl3(aq)蒸干得Al(OH)3,灼烧得Al2O3。(3)考虑盐受热时是否分解,如Ca(HCO3)2、NaHCO3、KMnO4、NH4Cl固体受热易分解,因此蒸干灼烧后分别为Ca(HCO3)2CaCO3(CaO);NaHCO3Na2CO3;KMnO4K2MnO4和MnO2;NH4ClNH3HCl。(4)还原性盐在蒸干时会被O2氧化,如Na2SO3(aq)蒸干得Na2SO4(s)。(5)弱酸的铵盐蒸干后无固体,如NH4HCO3、(NH4)2CO3。考点4溶液中粒子浓度的大小比较1注意两大理论,构建思维模型(1)电离理论弱电

37、解质的电离是微弱的,电离产生的微粒都非常少,同时还要考虑水的电离,如氨水溶液中:c(NH3H2O)c(OH)c(NHeq oal(,4)。多元弱酸的电离是分步进行的,其主要是第一级电离。如在H2S溶液中:c(H2S)c(H)c(HS)c(S2)。(2)水解理论弱离子的水解损失是微量的(水解相互促进的除外),但由于水的电离,故水解后酸性溶液中c(H)或碱性溶液中c(OH)总是大于水解产生的弱电解质的浓度。如NH4Cl溶液中:c(Cl)c(NHeq oal(,4)c(H)c(NH3H2O)。多元弱酸酸根离子的水解是分步进行的,其主要是第一步水解,如在Na2CO3溶液中:c(COeq oal(2,3

38、)c(HCOeq oal(,3)c(H2CO3)。2把握三种守恒,明确等量关系(1)电荷守恒注重溶液呈电中性溶液中所有阳离子所带的正电荷总浓度等于所有阴离子所带的负电荷总浓度。如NaHCO3溶液中:c(Na)c(H)c(HCOeq oal(,3)2c(COeq oal(2,3)c(OH)。(2)物料守恒注重溶液中某元素的原子守恒在电解质溶液中,粒子可能发生变化,但变化前后其中某种元素的原子个数守恒。如0.1 molL1 NaHCO3溶液中:c(Na)c(HCOeq oal(,3)c(COeq oal(2,3)c(H2CO3)0.1 molL1。(3)质子守恒注重分子或离子得失H数目不变在电解质

39、溶液中,由于电离、水解等过程的发生,往往存在质子(H)的得失,但得到的质子数等于失去的质子数。如Na2S水溶液中的质子转移如图所示: 由图可得Na2S水溶液中质子守恒式:c(OH)c(H)2c(H2S)c(HS)。质子守恒的关系式也可以由电荷守恒式与物料守恒式推导得到。Na2S水溶液中电荷守恒式为c(Na)c(H)c(OH)c(HS)2c(S2),物料守恒式为 c(Na)2c(HS)c(S2)c(H2S),由式式消去没有参与变化的Na,即可得质子守恒式:c(OH)c(H)2c(H2S)c(HS)。第四讲难溶电解质的溶解平衡考点1沉淀溶解平衡及其应用一、沉淀溶解平衡1沉淀溶解平衡的概念在一定温度

40、下,当难溶电解质溶于水形成饱和溶液时,溶解速率和生成沉淀速率相等的状态。2沉淀溶解平衡的建立固体溶质eq o(,sup12(溶解),sdo4(沉淀)溶液中的溶质eq blc(avs4alco1(v溶解v沉淀,固体溶解,v溶解v沉淀,溶解平衡,v溶解0为例外界条件移动方向平衡后c(Ag)平衡后c(Cl)Ksp升高温度正向增大增大增大加水稀释正向不变不变不变加入少量AgNO3逆向增大减小不变通入HCl逆向减小增大不变通入H2S正向减小增大不变三、沉淀溶解平衡的应用1沉淀的生成(1)调节pH法如除去CuCl2溶液中的杂质FeCl3,可以向溶液中加入CuO,调节溶液的pH,使Fe3形成Fe(OH)3沉

41、淀而除去。离子方程式为Fe33H2OFe(OH)33H、CuO2H=Cu2H2O。(2)沉淀剂法如用H2S沉淀Cu2,离子方程式为H2SCu2=CuS2H。2沉淀的溶解(1)酸溶解法如CaCO3溶于盐酸,离子方程式为CaCO32H=Ca2H2OCO2。(2)盐溶液溶解法如Mg(OH)2溶于NH4Cl溶液,离子方程式为Mg(OH)22NHeq oal(,4)=Mg22NH3H2O。(3)配位溶解法如AgCl溶于氨水,离子方程式为AgCl2NH3H2O=Ag(NH3)2Cl2H2O。3沉淀的转化(1)实质:沉淀溶解平衡的移动。如MgCl2溶液eq o(,sup12(加入NaOH(少量)),sdo4

42、()Mg(OH)2eq o(,sup12(加入FeCl3),sdo4()Fe(OH)3,则溶解度:Mg(OH)2Fe(OH)3。(2)规律一般说来,溶解度小的沉淀转化成溶解度更小的沉淀容易实现,沉淀的溶解度差别越大,越容易转化。(3)应用锅炉除垢:将CaSO4转化为CaCO3,离子方程式为CaSO4COeq oal(2,3)=CaCO3SOeq oal(2,4)。矿物转化:CuSO4溶液遇ZnS转化为CuS,离子方程式为ZnSCu2=CuSZn2。考点2溶度积常数及其应用1溶度积和离子积以AmBn(s)mAn(aq)nBm(aq)为例:溶度积离子积概念沉淀溶解的平衡常数溶液中有关离子浓度幂的乘

43、积符号KspQc表达式Ksp(AmBn)cm(An)cn(Bm),式中的浓度都是平衡浓度Qc(AmBn)cm(An)cn(Bm),式中的浓度是任意时刻的浓度应用判断在一定条件下沉淀能否生成或溶解(1)QcKsp:溶液过饱和,有沉淀析出(2)QcKsp:溶液饱和,处于平衡状态(3)QcKsp:溶液未饱和,无沉淀析出2.Ksp的影响因素(1)内因:难溶物质本身的性质,这是主要决定因素。(2)外因浓度:加水稀释,平衡向溶解方向移动,但Ksp不变。温度:绝大多数难溶盐的溶解是吸热过程,升高温度,平衡向溶解方向移动,Ksp增大。其他:向平衡体系中加入可与体系中某些离子反应生成更难溶物质或更难电离物质或气体的离子时,平衡向溶解方向移动,但Ksp不变。 HYPERLINK /books/rjb/huaxue/pgzxzxbxd1c/024.htm 第四章 化学反应与电能知识点总结1、原电池的工作原理(1)原电池的概念:把化学能转变为电能的装置称为原电池。(2)Cu-Zn原电池的工作原理:(3)氢氧燃料电池负极反应:2H2+4OH-4H2O+4e-

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论