实证-ARCH模型在股市行情分析中的应用ARCH模型_第1页
实证-ARCH模型在股市行情分析中的应用ARCH模型_第2页
实证-ARCH模型在股市行情分析中的应用ARCH模型_第3页
实证-ARCH模型在股市行情分析中的应用ARCH模型_第4页
实证-ARCH模型在股市行情分析中的应用ARCH模型_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、-PAGE . z.石河子大学毕业论文题目:ARCH模型在股市行情分析中的应用 院系: 商学院统计金融系 年级: 2005级 专业: 统计学 班级: 统计20051班 *: 20054595 *: 付昌婷 指导教师: 谭 斌 完成时间:2009年3月目 录 TOC o 1-3 h z u HYPERLINK l _Toc37073237引言 PAGEREF _Toc37073237 h 1HYPERLINK l _Toc370732381研究背景及现状综述 PAGEREF _Toc37073238 h 2HYPERLINK l _Toc370732391.1 研究背景 PAGEREF _Toc

2、37073239 h 2HYPERLINK l _Toc370732401.2 研究现状 PAGEREF _Toc37073240 h 2HYPERLINK l _Toc370732412 模型及方法介绍 PAGEREF _Toc37073241 h 3HYPERLINK l _Toc370732422.1 ARCH模型 PAGEREF _Toc37073242 h 3HYPERLINK l _Toc370732432.2 GARCH模型 PAGEREF _Toc37073243 h 3HYPERLINK l _Toc370732442.3 本文涉及的其他理论 PAGEREF _Toc3707

3、3244 h 4HYPERLINK l _Toc370732452.3.1 白噪声序列及其性质 PAGEREF _Toc37073245 h 4HYPERLINK l _Toc370732462.3.2 ARCH LM检验 PAGEREF _Toc37073246 h 4HYPERLINK l _Toc370732473 数据的选取及描述 PAGEREF _Toc37073247 h 5HYPERLINK l _Toc370732484 实证分析 PAGEREF _Toc37073248 h 5HYPERLINK l _Toc370732494.1建立初步模型 PAGEREF _Toc3707

4、3249 h 5HYPERLINK l _Toc370732504.1.1 ADF检验 PAGEREF _Toc37073250 h 6HYPERLINK l _Toc370732514.1.2 残差统计图 PAGEREF _Toc37073251 h 7HYPERLINK l _Toc370732524.1.3 残差线图 PAGEREF _Toc37073252 h 7HYPERLINK l _Toc370732534.1.4 ARCH LM检验结果 PAGEREF _Toc37073253 h 8HYPERLINK l _Toc370732544.2 建立GARCH模型 PAGEREF _

5、Toc37073254 h 8HYPERLINK l _Toc370732554.3 调整模型 PAGEREF _Toc37073255 h 10HYPERLINK l _Toc370732564.4模型的比拟 PAGEREF _Toc37073256 h 12HYPERLINK l _Toc370732574.4.1 统计量比拟 PAGEREF _Toc37073257 h 12HYPERLINK l _Toc370732584.4.2 预测指标比拟 PAGEREF _Toc37073258 h 13HYPERLINK l _Toc370732594.5预测 PAGEREF _Toc3707

6、3259 h 13HYPERLINK l _Toc370732605 结论及建议 PAGEREF _Toc37073260 h 14HYPERLINK l _Toc370732615.1 我国股市存在异方差性 PAGEREF _Toc37073261 h 15HYPERLINK l _Toc370732625.2 ARCH类模型能够消除股市异方差 PAGEREF _Toc37073262 h 15HYPERLINK l _Toc370732635.3 确定模型 PAGEREF _Toc37073263 h 15HYPERLINK l _Toc370732645.4 预测结果 PAGEREF _

7、Toc37073264 h 15HYPERLINK l _Toc370732655.5 为股市有效性提供依据15HYPERLINK l _Toc370732655.6 对投资者的建议 PAGEREF _Toc37073265 h 15HYPERLINK l _Toc37073266完毕语 PAGEREF _Toc37073266 h 16HYPERLINK l _Toc37073267致 PAGEREF _Toc37073267 h 17HYPERLINK l _Toc37073268参考文献 PAGEREF _Toc37073268 h 18-PAGE . z摘 要本文根据自回归条件异方差A

8、RCH模型能够很好的刻画股票价格序列波动的尖峰厚尾特征,通过收集所需的相关历史数据,运用Eviews5.0统计分析软件,筛选出适合于做ARCH模型的沪深两市大盘收盘价格指数日数据,对其波动变化进展实证研究,运用极大似然估计法、ARCH LM检验和残差的白噪声检验等一系列时间序列分析方法确定最终模型,对大盘收盘价格指数短期的走势做出试探性预测。关键词:ARCH模型 收盘价格指数 条件异方差 ARCH ModelsApply in The Analysis ofStockMarkets QuotationsAbstractAccording to this paper from the autor

9、egressiveconditional heteroskedasticity (ARCH) model could portray the sequence of fluctuationswell in the stock price peak of the fat-tail characteristics, by collecting the necessary data related to history, using the statistical analysis softwareEviews5.0, sieve the closing price inde* day date t

10、hat suits in fitting the ARCH model in the two stock markets of Shanghai and Shenzhen, make an empirical study on its volatility of changes, apply the ma*imum likelihood estimation, ARCH LM test and white noise test of the residual etc. a series of time-series analysis method to determine the final

11、model, make e*ploratory prediction about the trend of stock markets closing price inde* in short-term.Key words: ARCH Model closing price inde* conditional heteroskedasticity-. z引言中国股票市场虽然起步较晚,但其开展是相当迅猛的,尤其是进入2000年以后,中国的股市更加活泼了。在价格变化多端的股票市场中,投资者们因盲目买卖股票使自己的收益或盈或亏,大多数会带有从众或投机的心理去投资,从而形成一定形式的买卖跟风。股票市场

12、价格序列的残差都具有时变波动性、波动集聚等特点,但是传统的时间序列分析方法无法很好的刻画和解释这一点,恩格尔(Engle)于1982年提出了条件异方差自回归模型简称ARCH模型,它能集中地反映方差的变化特点,现已被广泛地应用于经济领域的时间序列分析、验证金融理论中的规律描述、金融市场的预测和决策。因此本文基于ARCH模型结合沪深两证券交易所大盘的收盘价格指数日数据及其波动变化进展实证分析,借鉴国外专家已有的研究成果,运用极大似然估计方法、ARCH LM检验和残差的白噪声检验等一系列时间序列分析方法,对大盘的日收盘价格指数的波动进展实证分析并对其短期的走势做出试探性预测。1 研究背景及现状综述1

13、.1 研究背景中国股票市场起步的相对于国外的股票市场较晚,但其开展是相当迅猛的。无论是国还是国外,股票市场的价格序列残差都具有时变波动性、波动集聚等特点,为了能够运用更好的分析方法来解释这一点,许多经济学家开场尝试用不同的模型和方法来解决这个问题。其中具有代表性的是恩格尔(Engle)提出的条件异方差自回归模型,简称ARCH模型。因此,利用ARCH类模型分析股票市场的波动特性并对其进展分析具有一定的理论和现实意义。在对股市行情中的研究中,需涉及到时间序列分析这一学科中的ARCH模型分析,经过近二十年的开展,目前该模型已被认为是最集中地反映了方差的变化特点,从而广泛地应用于经济领域的时间序列分析

14、。对金融市场不确定性的探讨和实证分析,是现代金融研究的核心问题之一。近年开展起来的金融市场价格波动非线性时间序列模型及其分析方法,在理论探讨和实际应用方面,都取得迅速的进展,形成了ARCH类计量模型1。1.2 研究现状从国外的研究现状来看,将ARCH模型作为一种度量金融时间序列数据波动性的有效工具,并应用于与波动性有关广泛研究领域。包括政策研究、理论命题检验、季节性分析等方面。如VICENT ARAGOMANZANA,Ma ANGELES FERNANDEZIZQUIERDO2003通过建立GARCH模型,研究IBE*35股票指数收益率和波动性的季节性规律。通过实证检验发现指数波动存在以月为单

15、位的波动周期,而指数收益率则不存在周期性特点。通过传统的计量分析方法已经不能再很好的刻画和解释,而运用ARCH模型就能够更好的分析这方面的问题。从国的研究现状来看,利用ARCH模型分析证券市场价格波动性这方面的研究是ARCH模型在证券市场上的一个非常重要的应用,包括对股票市场价格波动性的ARCH效应检验研究。近年来我国不少专家学者利用该模型分析我国股票市场,如闫冀楠、维1998首次对证券交易所股价的收益分布特征进展实证分析;胡海鹏、方兆本20012从参数估计准则和收益率波动性的定量表达这两方面来探讨股市收益的波动性预测改良方法;梅,苗佳,王升20043利用GARCH模型预测沪深股票市场波动性;

16、唐小凤(2007)4,严定琪,育锋(2008)5利用ARCH类模型分析我国股票市场的有效性,测度股票市场的系统风险,帮助政府制订和完善金融政策等问题做了深入的研究。自进入21世纪,中国经济稳健而快速的开展着。我国的证券市场成为经济市场中不可或缺的重要局部6,越来越具备投资理财意识的现代人把自己的热钱从局部的储蓄里拿出投资到其中,以和为代表的股票市场在这样的投资活动中变得更加活泼了。尤其是2006年股市中的投资者们根本上都能盈利,于是更多的人也就跟着进入,形成一定形式的买卖跟风。但是,从2007年美国次贷危机开场席卷各国金融市场,使得中国股票市场在2008年一直处于低迷的熊市状态。许多投资者对此

17、持观望态度,不愿意将热钱倾注于现在的股票市场中。现本文将对我国股票市场的沪深股市的大盘收盘价格指数进展以下的实证分析,进而对预测未来短期做出预测。2 模型及方法介绍2.1 ARCH模型ARCH模型的全称是自回归条件异方差模型autoregressive conditional heteroskedatic。它的完整构造为:, , 式中,为的Auto-Regressive模型;i.i.d,E()=0,Var=1,都非负,。如果扰动项的条件异方差中不存在自相关,就有:。这时从而得到误差的条件方差的同方差性情形,即为白噪声。ARCH模型的实践难点就是:对于大多数的p,无限制约束的估计常常会违背都是非

18、负的限定条件,而事实上恰恰需要这个限定来保证条件异方差永远是正数。考虑到ARCH模型中的方差方程是的一个分布滞后模型,就可以用一个或两个的滞后值代替许多的滞后值,这就是广义自回归条件异方差模型generalized autoregressive conditional heteroscedasticity model, GARCH模型的根本思想。2.2 GARCH模型高阶的GARCH模型可以含有任意多个ARCH项和GARCH项,记作GARCH(q,p)。,式中,为的回归函数;i.i.d,E()=0,Var=1。p是移动平均ARCH项的阶数,q是自回归GARCH项的阶数,并且,L和L是滞后算子多

19、项式。为了使GARCH(q,p)模型的条件方差有明确的定义,相应的ARCH模型的所有系数都必须是正数7。GARCH模型实际上就是在ARCH模型的根底上,增加考虑了异方差函数的p阶自相关性。它可以有效地拟合具有长期记忆的异方差函数。条件1:参数非负0,0,0;条件2:参数有界1这两个约束条件限制了GARCH模型的使用面。标准的GARCH(1,1)模型为: ,=1,2,T 其中:,i.i.d, E()=0,Var=1。是维外生变量向量,是维系数向量。给出的均值方程是一个带有误差项的外生变量的函数。由于是以前面信息为根底的一期向前预测方差,所以被成作条件方差,它被称作条件异方差方程。方差方程的件方差

20、有3个组成局部:1常数项:;2用均值方程的残差平方的滞后来度量从前期得到的波动性的信息:ARCH项;3上一期的预测方差:GARCH项。 其中的约束条件为:和均为非负,且。2.3 本文涉及的其他理论2.3.1 白噪声序列及其性质为了确定平稳序列还值不值得继续分析下去,我们需要对平稳序列进展纯随机性检验。纯随机序列的定义:如果时间序列满足如下性质:1任取有;2任取有称为序列为纯随机序列,也称为白噪声white noise序列,简记为。白噪声的性质:1纯随机性。由于白噪声序列具有如下性质:,这说明白噪声序列的各项之间没有任何相关关系,这种没有记忆的序列就是我们说的纯随机序列。纯随机性还是我们判断相关

21、信息是否提取充分的一个判断标准。2方差齐性。所谓方差齐性,就是指序列中每个变量的方差都相等,如果序列不满足方差齐性,我们就称该序列具有异方差性质,那就说明残差序列还不是白噪声序列,即拟合模型没有充分提取随机序列中的相关信息,这时拟合模型的精度是值得疑心的。在这种场合下,我们通常需要使用适当的条件异方差模型来拟合该序列的开展8。2.3.2 ARCH LM检验Engle在1983年提出检验残差序列中是否存在ARCH效应的拉格朗日乘数检验Lagrange multiplier test,即ARCH LM检验。自回归条件异方差性的这个特殊的设定,是由于人们发现在许多金融时间序列中,残差的大小与最近的残

22、差值有关。ARCH本身不能使标准的OLS估计无效,但是,忽略了ARCH影响可能导致有效性降低。ARCH LM检验统计量由一个辅助检验回归计算。为检验原假设:残差序列中直到p阶都不存在ARCH效应,需要进展如下回归 ,式中的是残差。此回归式表示残差平方对一个常数和直到p阶的残差平方的滞后。s=1,2,p所作的一个回归。这个检验回归有两个统计量:1F统计量是对所有残差平方的滞后的联合显著性所作的一个省略变量检验;2TR2统计量的准确的有限样本分布未知,但是LM检验统计量在一般情况下是渐进服从分布的9。3 数据的选取及描述本文选取证券交易所上证综指000001.ss和证券交易所深证成指399001这

23、两个大盘的日收盘价格指数2000年1月4日2009年1月23日的2186个数据注 由于样本量较大,无法将全部数据附在附录中,具体数据见锐思数据库.resset.。数据来源于锐思数据库.resset.。在分析时,我们把上证综指的收盘价指数用SH表示,深证成指的收盘价指数用SZ表示。为了减少舍入误差,在估计时,对SH和SZ进展自然对数处理为LSH和LSZ,即将序列LSH和LSZ作为因变量进展估计。4 实证分析首先,为了解我国股票市场在证券交易所和证券交易所的波动,选择股票大盘收盘价格指数上证综指和深证成指从2000年1月4日到2009年1月23日的日收盘价格数据进展以下实证分析。4.1建立初步模型

24、由于对股票收盘价格序列做单位根检验后发现序列是不平稳的,而且常常用一种特殊的单位根过程随机游走random walk模型描述注 非平隐随机过程通常是具有确定性时间趋势或者是一个单位根过程,参见Hamliton(1994)时间序列分析,金融资产价格的变动通常设定为后者,因Yt-1的系数为1而得名。所以我们估计的根本形式为(41)作为均值方程10。其中是日股票收盘价格,是对日收盘价格数据取对数后的序列,是随机误差项。在Eviews5.0的数据分析过程中,由SH和SZ分别代替。对于该时间序列数据,为了减少舍入误差,运用统计软件Eviews5.0对日收盘价格进展自然对数处理,经对数处理后的上证综指和深

25、证成指的日收盘价格序列为LSH和LSZ。首先利用简单回归估计均值方程式(41)结果如下:表4-1 上证综指的结果VariableCoefficientStd. Errort-StatisticProb.LSH(-1)1.0000184.87E-0520550.830.0000R-squared0.998181Mean dependent var7.530900Adjusted R-squared0.998181S.D. dependent var0.402211S.E. of regression0.017154Akaike info criterion-5.292736Sum squared

26、 resid0.642648Schwarz criterion-5.290133Log likelihood5783.315Durbin-Watson stat1.984310(42)S.E.=4.8710-5t=20550.83R2=0.998181 对数似然值=5783.315 AIC=-5.292736 SC=-5.290133表4-2 深证成指的结果VariableCoefficientStd. Errort-StatisticProb.LSZ(-1)1.0000354.66E-0521453.090.0000R-squared0.998792Mean dependent var8.4

27、53238Adjusted R-squared0.998792S.D. dependent var0.530996S.E. of regression0.018455Akaike info criterion-5.146512Sum squared resid0.743837Schwarz criterion-5.143908Log likelihood5623.564Durbin-Watson stat1.915307(43)S.E.=4.6610-5t=(21453.09)R2=0.998792 对数似然值=5623.564 AIC=-5.146512 SC=-5.143908由表4-1和

28、表4-2分析得该方程的统计量很显著,拟合程度也很好,所以进一步证实了股票收盘价格序列是符合这种随机游走模型的。4.1.1 ADF检验其原假设为:序列存在一个单位根,即不平稳;备择假设为:不存在单位根序列,即平稳。Mackinnon通过模拟可以得出不同回归模型及不同样本容量下检验的参数估计在设定显著性水平下的t统计量的临界值11。现对LSH和LSZ分别回归后的残差序列r_lsh和r_lsz的平稳性进展单位根检验,结果如表4-3和表4-4所示:表4-3 上证综指的残差单位根检验t-StatisticProb.*Augmented Dickey-Fuller test statistic-8.337

29、2990.0000Test critical values:1% level-3.4331805% level-2.86267610% level-2.567421表 4-4 深证成指的残差单位根检验t-StatisticProb.*Augmented Dickey-Fuller test statistic-10.777550.0000Test critical values:1% level-3.4331655% level-2.86267010% level-2.567417以上结果说明,p=0.0000,小于0.05,从而拒绝原假设(序列存在一个单位根),即残差序列r_lsz和r_ls

30、h不存在单位根,是平稳序列。4.1.2 残差统计图各残差的统计性质及特征,都呈现出明显的尖峰厚尾特征,如以下两图所示:图4-1上证综指的残差统计图图4-2 深证成指的残差统计图4.1.3 残差线图观察上证综指和深证成指的残差的线图如下两图所示:波动在一些时间非常小,在其他一些时间非常大,这说明该残差项可能具有条件异方差性。图4-3 上证综指的残差序列图图4-4 深证成指的残差序列图4.1.4 ARCH LM检验结果我们对均值方程的残差进展条件异方差的ARCH LM检验,得到了在滞后阶数p=12的ARCH LM检验结果:表4-5 上证综指和深证成指ARCH LM检验结果ARCH Test:F-s

31、tatistic上证综指13.67193Probability0.000000Obs*R-squared上证综指153.3991Probability0.000000F-statistic深证成指17.11610Probability0.000000Obs*R-squared深证成指188.6872Probability0.000000由表4-5所示,结果中F统计量和Q统计量的p值均小于0.05,拒绝原假设,说明上证综指和深证成指的残差序列均存在ARCH效应。并且ARCH的滞后阶数为12,阶数较高。4.2 建立GARCH模型由以上结果得知ARCH的之后阶数较高,是高阶的ARCH模型,所以利用G

32、ARCH(1,1)模型进展重新估计。表 4-6 上证综指的GARCH(1,1)估计结果CoefficientStd. Errorz-StatisticProb.LSH(-1)1.0000383.32E-0530118.750.0000Variance EquationC3.56E-066.03E-075.8998390.0000RESID(-1)20.1007980.00811012.429030.0000GARCH(-1)0.8920560.007393120.66990.0000R-squared0.998181Mean dependent var7.530900Adjusted R-sq

33、uared0.998178S.D. dependent var0.402211S.E. of regression0.017166Akaike info criterion-5.553489Sum squared resid0.642698Schwarz criterion-5.543073Log likelihood6071.186Durbin-Watson stat1.984196 均值方程:(44)S.E.=3.3210-5z=(30118.75) 方差方程:(45) S.E.=6.0310-7 (0.008110) (0.007393)z=5.899839 (12.42903) (12

34、0.6699)R2=0.998181 对数似然值=6071.186 AIC=-5.553489 SC=-5.543073表4-7 深证成指的GARCH(1,1)估计结果CoefficientStd. Errorz-StatisticProb.LSZ(-1)1.0000233.39E-0529526.360.0000Variance EquationC4.17E-067.91E-075.2709630.0000RESID(-1)20.0985870.00815412.090500.0000GARCH(-1)0.8925220.007649116.68860.0000R-squared0.9987

35、92Mean dependent var8.453238Adjusted R-squared0.998790S.D. dependent var0.530996S.E. of regression0.018468Akaike info criterion-5.413262Sum squared resid0.743859Schwarz criterion-5.402846Log likelihood5917.988Durbin-Watson stat1.915226均值方程:(46)S.E.=3.3910-5z=(29526.36)方差方程:(47)S.E.=7.9110-7 (0.00815

36、4) (0.007649)z=5.270963 (12.09050) (116.6886)R2=0.998792 对数似然值=5917.988 AIC=-5.413262 SC=-5.402846方差方程中的ARCH项和GARCH项的系数都是统计显著的,并且对数似然值有所增加,同时AIC和SC的值都变小,这说明GARCH(1,1)模型能更好的拟合数据。再对以上两个GARCH(1,1)模型进展残差异方差的检验,得到了用GARCH(1,1)模型对上证综指和深证成指的残差平方图在滞后阶数p=12时的统计结果:图4-5 上证综指和深证成指的残差平方图由图4-5可知,此时的相伴概率p均大于0.05,承受

37、原假设,认为该残差序列不存在ARCH效应,说明GARCH(1,1)模型消除了上证综指和深证成指中残差序列的条件异方差性。图4-6上证综指和深证成指残差相关图由以上分析可见,GARCH(1,1)确实能够消除残差的异方差性。通过GARCH(1,1)模型对上证综指和深证成指日收盘指数进展拟合,各方差方程中的ARCH模型和GARCH项的系数都非负,其系数之和0.100798+ 0.892056等于0.992854,0.098587+0.892522等于0.991109,均小于1,满足参数约束条件。由于系数之和非常接近于1,说明条件方差所受的冲击是持久的,即冲击对未来所有的预测都有重要作用。因此,通过G

38、ARCH(1,1)模型消除残差即价格指数的变动的异方差,对于股票市场的上证综指和深证成指的预测起到一个很好的指导性作用。而对其预测不仅仅是要消除残差的异方差性,还要使残差序列不存在相关性,使其成为一个独立同分布的白噪声序列。4.3 调整模型从图4-6得知,由于大盘收盘价格指数残差的相关性未被彻底消除,需进一步对大盘股价指数日数据进展分析。为消除自相关,所以对模型进展调整,表4-8 上证综指AR(4)-GARCH(1,1)模型估计结果CoefficientStd. Errorz-StatisticProb.LSH(-1)1.0096810.010075100.21610.0000LSH(-2)-

39、0.0306700.014963-2.0496770.0404LSH(-3)0.0634390.0123585.1335450.0000LSH(-4)-0.0424430.014631-2.9009450.0037Variance EquationC5.72E-061.95E-062.9253950.0034RESID(-1)20.1148570.01057410.862290.0000GARCH(-1)0.8714280.01024485.064880.0000图4-7 上证综指AR(4)-GARCH(1,1)模型的残差相关图由拟合上证综指日收盘价格指数的GARCH(1,1)模型调整为AR(

40、4)- GARCH(1,1)模型后,残差的自相关性已被消除了。同理可得,当拟合上证综指日收盘价格指数的GARCH(1,1)模型调整为AR(5)- GARCH (1,1)模型后,残差的自相关性也可被消除。拟合结果如表4-9所示:表4-9 上证综指AR(5)-GARCH(1,1)模型估计结果CoefficientStd. Errorz-StatisticProb.LSH(-1)1.0224310.01423171.842920.0000LSH(-2)-0.0457710.020386-2.2452130.0248LSH(-3)0.0548010.0307391.7827850.0746LSH(-4

41、)0.0048850.0310260.1574470.8749LSH(-5)-0.0363080.020636-1.7594440.0785Variance EquationC4.04E-067.65E-075.2807580.0000RESID(-1)20.1069480.00843812.674390.0000GARCH(-1)0.8845860.008228107.50440.0000现对深证成指日收盘价格指数的GARCH1,1模型进展以下调整,如表4-10所示,表4-10 深证成指AR(4)-GARCH(1,1)模型估计结果CoefficientStd. Errorz-Statisti

42、cProb.LSZ(-1)1.0340580.004329238.87210.0000LSZ(-2)-0.0565110.001997-28.294200.0000LSZ(-3)0.0642610.0240942.6671030.0077LSZ(-4)-0.0417720.022773-1.8342210.0666Variance EquationC4.56E-061.84E-062.4740920.0134RESID(-1)20.1023310.00830312.324030.0000GARCH(-1)0.8880440.007840113.26870.0000图4-9 深证成指AR(4)-

43、GARCH(1,1)模型的残差相关图由拟合深证成指日收盘价格指数的GARCH(1,1)模型调整为AR(4)- GARCH (1,1)模型后,残差的自相关性已被消除。同理可得,当拟合深证成指日收盘价格指数的GARCH(1,1)模型调整为AR(5)- GARCH (1,1)模型后,残差的自相关性也可被消除。拟合结果如表4-11所示:表4-11 深证成指AR(5)-GARCH(1,1)模型估计结果CoefficientStd. Errorz-StatisticProb.LSZ(-1)1.0421940.02240546.515420.0000LSZ(-2)-0.0640420.030915-2.07

44、15470.0383LSZ(-3)0.0513790.0276981.8549530.0636LSZ(-4)0.0072320.0245680.2943800.7685LSZ(-5)-0.0367420.020535-1.7892620.0736Variance EquationC4.14E-067.94E-075.2172090.0000RESID(-1)20.0979960.00832811.767340.0000GARCH(-1)0.8930860.007742115.35140.00004.4 模型的比拟4.4.1 统计量比拟根据以上分析结果,发现将上证综指的分布滞后项增加到4和5的阶

45、数时能够很好的将自相关性消除,深证成指的分布滞后项增加到4和5的阶数时能很好的将自相关性消除。表4-12 各模型的统计量比拟 统计量模型 R2对数似然值AIC值SC值上证综指AR(4)-GARCH1,10.9981916064.748-5.552473-5.534225AR(5) -GARCH1,10.9981966065.829-5.555093-5.534231深证成指AR(4)-GARCH1,10.9988035915.099-5.415306-5.397058AR(5)-GARCH1,10.9988085913.904-5.415776-5.394914根据表4-12拟合的统计量可以看

46、出:对于上证综指,AR(5)-GARCH(1,1)的可决系数R2高于AR(4)-GARCH(1,1)的,且对数似然值也高于AR(4)-GARCH(1,1)的,而AIC值和SC值相比拟下AR(5)-GARCH(1,1)的都小于AR(4)-GARCH(1,1)的。所以拟合上证综指AR(5)-GARCH(1,1) 好于AR(4)-GARCH(1,1)。对于深证成指,同理可看出AR(5)-GARCH(1,1)好于AR(4)-GARCH(1,1)。以上各模型中方差方程的ARCH模型和GARCH项的系数都非负,其系数之和均小于1,满足参数约束条件。由于系数之和非常接近于1,说明条件方差所受的冲击是持久的,

47、则冲击对未来所有的预测都有重要作用12。4.4.2 预测指标比拟评价模型预测功能是通过预测评价指标来进展判断的。假设预测样本期为t=T+1,,T+h,有以下计算方法对预测精度进展度量:平均绝对误差,平均相对误差均方根误其中:,分别为和y的平均值,和分别为和y的标准差,r为和y的相关系数,定义:,偏倚比例度量了预测值的均值与序列实际值均值的偏离程度,表示系统误差;方差比例度量了预测值方差与实际序列的方差的偏离程度;协方差比例衡量了剩余的非系统预测误差。偏差比例、方差比例和协方差比例之和为1。如果预测结果好,则偏差比和方差比应该较小,协方差比拟大13。将样本2186个日收盘价格数据中的前2180个

48、数据作为模型拟合所需的数据,后6个数据作为样本预测结果评价的依据。最后得到预测结果的评价度量指标:表4-13 各模型的预测评价指标比拟模型评价指标上证综指GARCH(1,1)深证成指GARCH(1,1)AR(4)AR(5)AR(4)AR(5)MSE0.4195230.3998090.4658550.475278MAE0.2909720.3402330.3936720.390782MAPE3.7137594.5584884.606464.538241BP0.1294110.1438350.0285780.005923VP0.7849150.2685620.6266620.747998CP0.08

49、56740.5876030.3447610.246079综合以上分析结果,对于上证综指 AR(5)-GARCH(1,1)预测的结果好于AR(4)- GARCH(1,1)的,深证成指AR(4)-GARCH(1,1)的预测结果好于AR(5)-GARCH(1,1)的。4.5预测我们选择模型上证综指为AR(5)-GARCH(1,1),深证成指为AR(4)-GARCH(1,1)对大盘的未来两天日收盘价格指数做出预测,上证综指的AR(5)-GARCH(1,1)模型为:均值方程: (48)S.E.=z=(71.84292) -2.2452131.7827850.157447-1.759444方差方程: (4

50、9)S.E.=7.6510-7 z=(5.280758) 12.67439 107.5044R2=0.998196 对数似然值=6065.829 AIC=-5.555093 SC=-5.534231深证成指的AR(4)-GARCH(1,1)模型为:均值方程: (410)S.E.=z=(238.8721) -28.29420 2.667103 -1.834221方差方程: (411)S.E.=1.8410-6 z=(2.474092) 12.32403 113.2687R2=0.998803 对数似然值=5915.099 AIC=-5.415306 SC=-5.397058在服从正态分布的假设下

51、,预测结果如下表4-14所示:表4-14 两大盘指数未来两天的预测结果日期股票2009年1月23日2009年2月2日2009年2月3日上证综指预测值2007.7712008.588实际值1990.662011.682060.81预测区间(1911.609,2108.770)(1912.364,2109.653)深证成指预测值7056.8657061.171实际值7015.247087.617266.41预测区间(6786.526,7337.973)(6790.602,7342.521)其中的预测区间是在95%的置信水平下做出的,预测区间公式由预测的结果可以看出上证综指和深证成指的未来两天的走势

52、是呈上升趋势的,实际值落在预测区间,但是其中的波动是很大的。5 结论及建议5.1 我国股市存在异方差性从证券交易所和证券交易所的收盘价格指数波动的统计特征呈现出明显的尖峰厚尾特征及残差的线图,到ARCH LM检验出的结果,可看出我国股市是存在很强的异方差性的。5.2 ARCH类模型能够消除股市异方差通过时间序列分析的ARCH模型和GARCH模型能够很好的描述大盘股票收盘价格指数波动变化的尖峰厚尾特征,经过ARCH LM检验及残差平方图的显示,发现大盘股价收盘指数的异方差性确实是被消除了。对于此,ARCH模型能够更加广泛的应用于股票市场行情的分析中。5.3 确定模型两大盘收盘价格指数的模型建立需

53、要高阶的ARCH模型,而GARCH(1,1)恰恰能够替代它,但是由GARCH(1,1)模型刻画出的残差结果只是消除了异方差,自相关仍是存在的。经上证综指和深证成指的GARCH(1,1)模型分别调整为AR(5)-GARCH(1,1)模型和AR(4)-GARCH(1,1)后,残差已成为白噪声序列。同时在经过预测评价指标的比拟后,对于上证成指的预测模型用AR(5)-GARCH(1,1),对于深证成指的预测模型用AR(4)- GARCH(1,1)。5.4 预测结果根据对上证综指和深证成指拟合好并可用于预测的模型AR(5)-GARCH(1,1)和AR(4)- GARCH(1,1),经过试探性预测做出的结果

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论