2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项练习试题(含解析)_第1页
2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项练习试题(含解析)_第2页
2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项练习试题(含解析)_第3页
2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项练习试题(含解析)_第4页
2022年强化训练冀教版九年级数学下册第二十九章直线与圆的位置关系专项练习试题(含解析)_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、九年级数学下册第二十九章直线与圆的位置关系专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个正多边形的半径与边长相等,则这个正多边形的边数为()A4B5C6D82、已知O的半径为3,点P到圆心O

2、的距离为4,则点P与O的位置关系是()A点P在O外B点P在O上C点P在O内D无法确定3、在中,给出条件:;外接圆半径为4请在给出的3个条件中选取一个,使得BC的长唯一可以选取的是( )ABCD或4、如图,在平面直角坐标系xOy中,点A(0,3),点B(2,1),点C(2,3)则经画图操作可知:ABC的外接圆的圆心坐标是( )A(2,1)B(1,0)C(1,1)D(0,1)5、如图,一把宽为2cm的刻度尺(单位:cm),放在一个圆形茶杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和10,茶杯的杯口外沿半径为( )A10cmB8cmC6cmD5cm6、已知的半径为

3、5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )A点在圆内B点在圆外C点在圆上D无法判断7、如图,O是正五边形ABCDE的外接圆,点P是的一点,则CPD的度数是()A30B36C45D728、如图,BE是O的直径,点A和点D是O上的两点,过点A作的切线交BE延长线于点C,若ADE=36,则C的度数是()A18B28C36D459、圆O的半径为5cm,点A到圆心O的距离OA4cm,则点A与圆O的位置关系为()A点A在圆上B点A在圆内C点A在圆外D无法确定10、如图,在矩形ABCD中,点O在对角线BD上,以OB为半径作交BC于点E,连接DE;若DE是的切线,此时的半径为( )ABCD第

4、卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,、是的切线,其中、为切点,点在上,则_2、如图,AB是半圆O的弦,DE是直径,过点B的切线BC与O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则BDC的度数为_3、Rt的两条直角边分别是一元二次方程的两根,则的外接圆半径为_4、 “化圆为方”是古希腊尺规作图难题之一,即:求作一个正方形,使其面积等于给定圆的面积这个问题困扰了人类上千年,直到19世纪,该问题被证明仅用直尺和圆规是无法完成的如果借用一个圆形纸片,我们就可以化圆为方,方法如下:已知:O(纸片),其半径为求作:一个正方形,使其面

5、积等于O的面积作法:如图1,取O的直径,作射线,过点作的垂线;如图2,以点为圆心,为半径画弧交直线于点;将纸片O沿着直线向右无滑动地滚动半周,使点,分别落在对应的,处;取的中点,以点为圆心,为半径画半圆,交射线于点;以为边作正方形正方形即为所求根据上述作图步骤,完成下列填空:(1)由可知,直线为O的切线,其依据是_(2)由可知,则_,_(用含的代数式表示)(3)连接,在Rt中,根据,可计算得_(用含的代数式表示)由此可得5、如图,PA,PB是的切线,切点分别为A,B若,则AB的长为_三、解答题(5小题,每小题10分,共计50分)1、如图,点在轴正半轴上,点是第一象限内的一点,以为直径的圆交轴于

6、,两点,两点的横坐标是方程的两个根,连接(1)如图(1),连接求的正切值;求点的坐标(2)如图(2),若点是的中点,作于点,连接,求证:2、如图,是的直径,是半径,连接,延长至点,使,过点作交的延长线于点(1)求证:是的切线;(2)若,求半径的长3、如图,四边形ACBD内接于O,AB是O的直径,CD平分ACB交AB于点E,点P在AB延长线上,(1)求证:PC是O的切线;(2)求证:;(3)若,ACD的面积为12,求PB的长4、如图,O是ABC的外接圆,ABC=45,OCAD,AD交BC的延长线于D,AB交OC于E(1)求证:AD是O的切线;(2)若AE=,CE=2,求O的半径和线段BC的长5、

7、如图,PA,PB是圆的切线,A,B为切点(1)求作:这个圆的圆心O(用尺规作图,保留作图痕迹,不写作法和证明);(2)在(1)的条件下,延长AO交射线PB于C点,若AC4,PA3,请补全图形,并求O的半径-参考答案-一、单选题1、C【解析】【分析】如图(见解析),先根据等边三角形的判定与性质可得,再根据正多边形的中心角与边数的关系即可得【详解】解:如图,由题意得:,是等边三角形,则这个正多边形的边数为,故选:C【点睛】本题考查了正多边形,熟练掌握正多边形的中心角与边数的关系是解题关键2、A【解析】【分析】根据点与圆心的距离与半径的大小关系即可确定点P与O的位置关系【详解】解:O的半径分别是3,

8、点P到圆心O的距离为4,dr,点P与O的位置关系是:点在圆外故选:A【点睛】本题主要考查了点与圆的位置关系,准确分析判断是解题的关键3、B【解析】【分析】画出图形,作,交BE于点D根据等腰直角三角形的性质和勾股定理可求出AD的长,再由AD和AC的长作比较即可判断;由前面所求的AD的长和AB的长,结合该三角形外接圆的半径长,即可判断该外接圆的圆心可在AB上方,也可在AB下方,其与AE的交点即为C点,为两点不唯一,可判断其不符合题意【详解】如图,点C在射线上作,交BE于点D,为等腰直角三角形,不存在的三角形ABC,故不符合题意;,AC=8,而AC6,存在的唯一三角形ABC,如图,点C即是,使得BC

9、的长唯一成立,故符合题意;,存在两个点C使的外接圆的半径等于4,两个外接圆圆心分别在AB的上、下两侧,如图,点和即为使的外接圆的半径等于4的点故不符合题意故选B【点睛】本题考查等腰直角三角形的判定和性质,勾股定理,三角形外接圆的性质利用数形结合的思想是解答本题的关键4、A【解析】【分析】首先由ABC的外心即是三角形三边垂直平分线的交点,所以在平面直角坐标系中作AB与BC的垂线,两垂线的交点即为ABC的外心【详解】解:ABC的外心即是三角形三边垂直平分线的交点,如图所示:EF与MN的交点O即为所求的ABC的外心,ABC的外心坐标是(2,1)故选:A【点睛】此题考查了三角形外心的知识注意三角形的外

10、心即是三角形三边垂直平分线的交点解此题的关键是数形结合思想的应用5、D【解析】【分析】作ODAB于C,OC的延长线交圆于D,其中点为圆心,为半径,cm,cm;设茶杯的杯口外沿半径为,在中,由勾股定理知,进而得出结果【详解】解:作ODAB于C,OC的延长线交圆于D,其中点为圆心,为半径,由题意可知cm,cm;AC=BC=4cm,设茶杯的杯口外沿半径为则在中,由勾股定理知解得故选D【点睛】本题考查了垂径定理,切线的性质,勾股定理的应用解题的关键在于将已知线段长度转化到一个直角三角形中求解计算6、A【解析】【分析】直接根据点与圆的位置关系进行解答即可【详解】解:O的半径为5cm,点P与圆心O的距离为

11、4cm,5cm4cm,点P在圆内故选:A【点睛】本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外7、B【解析】【分析】连接OC,OD求出COD的度数,再根据圆周角定理即可解决问题;【详解】解:如图,连接OC,OD五边形ABCDE是正五边形,COD72,CPDCOD36,故选:B【点睛】本题主要考查了正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型8、A【解析】【分析】连接OA,DE,利用切线的性质和角之间的关系解答即可【详解】解:连接OA,DE,如图,AC是的切

12、线,OA是的半径,OAACOAC=90ADE=36AOE=2ADE=72C=90-AOE=90-72=18故选:A.【点睛】本题考查了圆周角定理,切线的性质,能求出OAC和AOC是解题的关键9、B【解析】【分析】根据点与圆的位置关系的判定方法进行判断【详解】解:O的半径为5cm,点A到圆心O的距离为4cm,即点A到圆心O的距离小于圆的半径,点A在O内故选:B【点睛】本题考查了点与圆的位置关系:设O的半径为r,点P到圆心的距离OP=d,则有点P在圆外dr;点P在圆上d=r;点P在圆内dr10、D【解析】【分析】设半径为r,如解图,过点O作,根据等腰三角形性质,根据四边形ABCD为矩形,得出C=9

13、0=OFB,OBF=DBC,可证得出,根据勾股定理,代入数据,得出,根据勾股定理在中,即,根据为的切线,利用勾股定理,解方程即可【详解】解:设半径为r,如解图,过点O作,OB=OE,四边形ABCD为矩形,C=90=OFB,OBF=DBC,在中,即,又为的切线,解得或0(不合题意舍去)故选D【点睛】本题考查矩形性质,等腰三角形性质,圆的切线,勾股定理,一元二次方程,掌握矩形性质,等腰三角形性质,圆的切线性质,勾股定理,一元二次方程,矩形性质,等腰三角形性质,圆的半径相等,勾股定理,一元二次方程,是解题关键二、填空题1、76【解析】【分析】连接OA、OB,根据圆周角定理求得AOB,由切线的性质求出

14、OAP=OBP=90,再由四边形的内角和等于360,即可得出答案【详解】解:连接OA、OB,AOB=104PA、PB是O的两条切线,点A、B为切点,OAP=OBP=90APB+OAP+AOB+OBP=360APB=180-(OAP+AOB+OBP)=76故答案为:76【点睛】本题考查了切线的性质、四边形的内角和定理以及圆周角定理,利用切线性质和圆周角定理求出角的度数是解题的关键2、【解析】【分析】先由切线的性质得到OBC=90,再由平行四边形的性质得到BO=BC,则BOC=BCO=45,由OD=OB,得到ODB=OBD,由ODB+OBD=BOC,即可得到ODB=OBD=22.5,即BDC=22

15、.5【详解】解:BC是圆O的切线,OBC=90,四边形ABCO是平行四边形,AO=BC,又AO=BO,BO=BC,BOC=BCO=45,OD=OB,ODB=OBD,ODB+OBD=BOC,ODB=OBD=22.5,即BDC=22.5,故答案为:22.5【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键3、2.5#【解析】【分析】根据题意先解一元二次方程,进而根据直角三角形的外接圆的半径等于斜边的一边,即可求得答案【详解】解:,解得,Rt的两条直角边分别为3,4,斜边长为,直角三角形的外接圆的圆心在斜边上,且为斜边的中点,的外

16、接圆半径为【点睛】本题考查的是三角形的外接圆与外心,熟知直角三角形的外心是斜边的中点是解答此题的关键4、(1)经过半径外端且垂直于这条半径的直线是圆的切线;(2),;(3) 【解析】【分析】(1)根据切线的定义判断即可(2)由=AC+,计算即可;根据计算即可(3)根据勾股定理,得即为正方形的面积,比较与圆的面积的大小关机即可【详解】解:(1)O的直径,作射线,过点作的垂线,经过半径外端且垂直于这条半径的直线是圆的切线;故答案为:经过半径外端且垂直于这条半径的直线是圆的切线; (2)根据题意,得AC=r,=r,=AC+=r+r,=;,MA=-r=,故答案为:,; (3)如图,连接ME,根据勾股定

17、理,得=; 故答案为:【点睛】本题考查了圆的切线的定义,勾股定理,圆的周长,正方形的面积和性质,熟练掌握圆的切线的定义,勾股定理,正方形的性质是解题的关键5、3【解析】【分析】由切线长定理和,可得为等边三角形,则【详解】解:连接,如下图:,分别为的切线,为等腰三角形,为等边三角形,故答案为:3【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线三、解答题1、 (1),(4,3)(2)见解析【解析】【分析】(1)过点P作PHDC于H,作AFPH于F,连接PD、AD,利用因式分解法解出一元二次方程,求出OD、OC,根据垂径定理求出DH,根据勾股定理计算求出半径,根据圆周角定理

18、得到ADB90,根据正切的定义计算即可;过点B作BEx轴于点E,作AGBE于G,根据平行线分线段成比例定理定理分别求出OE、BE,得到点B的坐标;(2)过点E作EHx轴于H,证明EHDEFB,得到EHEF,DHBF,再证明RtEHCRtEFC,得到CHCF,结合图形计算,证明结论(1)解:以AB为直径的圆的圆心为P,过点P作PHDC于H,作AFPH于F,连接PD、AD,则DHHCDC,四边形AOHF为矩形,AFOH,FHOA1,解方程x24x+30,得x11,x23,OCOD,OD1,OC3,DC2,DH1,AFOH2,设圆的半径为r,则PH2,PFPHFH,在RtAPF中,AP2AF2+PF

19、2,即r222+(PH1)2,解得:r,PH2,PFPHFH1,AOD90,OAOD1,AD,AB为直径,ADB90,BD=3,tanABD;过点B作BEx轴于点E,交圆于点G,连接AG,BEO90,AB为直径,AGB90,AOE90,四边形AOEG是矩形,OEAG,OAEG1,AF2,PHDC,PHAG,AFFG2,AGOE4,BG2PF2,BE3,点B的坐标为(4,3);(2)证明:过点E作EHx轴于H,点E是的中点,EDEB,四边形EDCB为圆P的内接四边形,EDHEBF,在EHD和EFB中,EHDEFB(AAS),EHEF,DHBF,在RtEHC和RtEFC中,RtEHCRtEFC(H

20、L),CHCF,2CFCH+CFCD+DH+BCBFBC+CD【点睛】本题考查的是圆周角定理、全等三角形的判定和性质、垂径定理、勾股定理的应用,正确作出辅助线、求出圆的半径是解题的关键2、 (1)证明见解析(2)O半径的长为【解析】【分析】(1)根据角度的数量关系,可得,即,进而可证是的切线;(2)由题意知,由可得的值,由,知,得,在中,求解即可(1)证明:是的直径, 是的切线;(2)解:, ,在中,即半径长为【点睛】本题考查了切线的判定,勾股定理,正切值解题的关键在于对知识的灵活运用3、 (1)见解析(2)见解析(3)【解析】【分析】(1)连接,根据直径所对的圆周角等于90可得,根据等边对等角可得,进而证明,即可求得,从而证明PC是O的切线;(2)由(1)可得,进而证明,可得,根据等角对等边证明,即可得证;(3)作于点F,勾股定求得,证明,进而求得的长,设,根据ACD的面积为12,求得,勾股定理求得,由可得,即可求得的长(1)连接OC,如图,AB是的直径,即,.,.又是半径,是O的切线(2)由(1),得,.,平分,.又,即,.(3)作于点F,如图,平分,由勾股定理得:,.,.设,.解得或(舍去)RtACF中,由勾股定理得:,由(2)得,.,【点睛】本题考查了切线的判定,相似三角形的性质与判定,等腰三角形的性质与判定,勾

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论