版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、-PAGE . z【课题】 61 数列的概念【教学目标】知识目标:1了解数列的有关概念;2掌握数列的通项一般项和通项公式能力目标:通过实例引出数列的定义,培养学生的观察能力和归纳能力【教学重点】利用数列的通项公式写出数列中的任意一项并且能判断一个数是否为数列中的一项 【教学难点】根据数列的前假设干项写出它的一个通项公式【教学设计】通过几个实例讲解数列及其有关概念:项、首项、项数、有穷数列和无穷数列讲解数列的通项一般项和通项公式从几个具体实例入手,引出数列的定义.数列是按照一定次序排成的一列数学生往往不易理解什么是一定次序实际上,不管能否表述出来,只要写出来,就等于给出了次序,比方我们随便写出的
2、两列数:2,1,15,3,243,23与1,15,23,2,243,3,就都是按照一定次序排成的一列数,因此它们就都是数列,但它们的排列次序不一样,因此是不同的数列例1和例3是基此题目,前者是利用通项公式写出数列中的项;后者是利用通项公式判断一个数是否为数列中的项,是通项公式的逆向应用例2是稳固性题目,指导学生分析完成.要列出项数与该项的对应关系,不能泛泛而谈,采用对应表的方法比拟直观,降低了难度,学生容易承受.【教学备品】教学课件【课时安排】2课时(90分钟)【教学过程】教 学 过 程教师行为学生行为教学意图时间*提醒课题火车1中国比利时飞机1飞机2火车2火车3货船1货船261 数列的概念*
3、创设情境 兴趣导入将正整数从小到大排成一列数为1,2,3,4,5, (1 )将2的正整数指数幂从小到大排成一列数为 (2 )当n从小到大依次取正整数时,的值排成一列数为-1,1,-1,1, (3 )取无理数的近似值四舍五入法,依照有效数字的个数,排成一列数为3,3.1,3.14,3.141,3.1416, (4)介绍播放课件质疑引导分析了解观看课件思考自我分析从实例出发使学生自然的走向知识点05*动脑思考 探索新知【新知识】象上面的实例那样,按照一定的次序排成的一列数叫做数列数列中的每一个数叫做数列的项从开场的项起,按照自左至右的排序,各项按照其位置依次叫做这个数列的第1项或首项,第2项,第3
4、项,第n项,其中反映各项在数列中位置的数字1,2,3,n,分别叫做对应的项的项数 只有有限项的数列叫做有穷数列,有无限多项的数列叫做无穷数列【小提示】数列的项与这一项的项数是两个不同的概念如数列2中,第3项为,这一项的项数为3.【想一想】上面的4个数列中,哪些是有穷数列,哪些是无穷数列【新知识】由于从数列的第一项开场,各项的项数依次与正整数相对应,所以无穷数列的一般形式可以写作简记作其中,下角码中的数为项数,表示第1项,表示第2项,当由小至大依次取正整数值时,依次可以表示数列中的各项,因此,通常把第n项叫做数列的通项或一般项总结归纳仔细分析讲解关键词语思考理解记忆带着学生分析引导式启发学生得出
5、结果10*运用知识 强化练习 1.说出生活中的一个数列实例2.数列1,2,3,4,5”与数列5 ,4, 3,2,1 ”是否为同一个数列? 3.设数列为-5,-3,-1,1,3, 5, ,指出其中、各是什么数?提问巡视指导思考口答及时了解学生知识掌握得情况15*创设情境 兴趣导入【观察】 中的数列1中,各项是从小到大依次排列出的正整数,可以看到,每一项与这项的项数恰好一样这个规律可以用表示利用这个规律,可以方便地写出数列中的任意一项,如,中的数列2中,各项是从小到大顺次排列出的2的正整数指数幂,可以看到,各项的底都是2,每一项的指数恰好是这项的项数这个规律可以用表示,利用这个规律,可以方便地写出
6、数列中的任意一项,如,质疑引导分析思考参与分析引导启发学生思考25*动脑思考 探索新知【新知识】一个数列的第n项,如果能够用关于项数的一个式子来表示,则这个式子叫做这个数列的通项公式.数列1的通项公式为,可以将数列1记为数列n;数列2的通项公式为,可以将数列2记为数列.总结归纳仔细分析讲解关键词语思考归纳理解记忆带着学生总结35*稳固知识 典型例题例1 设数列的通项公式为,写出数列的前5项分析 知道数列的通项公式,求数列中的*一项时,只需将通项公式中的n换成该项的项数,并计算出结果解;例2 根据以下各无穷数列的前4项,写出数列的一个通项公式. (1)5,10,15,20,; (2); 31,1
7、,1,1,分析 分别观察分析各项与其项数之间的关系,探求用式子表示这种关系解 1数列的前4项与其项数的关系如下表:项数n1234项5101520关系由此得到,该数列的一个通项公式为2数列前4项与其项数的关系如下表:序号1234项关系由此得到,该数列的一个通项公式为3数列前4项与其项数的关系如下表:序号1234项1111关系由此得到,该数列的一个通项公式为【注意】由数列的有限项探求通项公式时,答案不一定是唯一的例如,与都是例23中数列1,1,1,1,的通项公式【知识稳固】例3 判断16和45是否为数列3n+1中的项,如果是,请指出是第几项.分析 如果数a是数列中的第k项,则k必须是正整数,并且.
8、解 数列的通项公式为.将16代入数列的通项公式有,解得所以,16是数列中的第5项将45代入数列的通项公式有,解得,所以,45不是数列中的项说明强调引领讲解说明引领分析强调含义说明观察思考主动求解观察思考求解领会思考求解通过例题进一步领会注意观察学生是否理解知识点反复强调50*运用知识 强化练习 1. 根据以下各数列的通项公式,写出数列的前4项:1; 22. 根据以下各无穷数列的前4项,写出数列的一个通项公式:11,1,3,5,; (2) , , , ,; (3),,.3. 判断12和56是否为数列中的项,如果是,请指出是第几项启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳65*理
9、论升华 整体建构思考并答复下面的问题:数列、项、项数分别是如何定义的?结论:按照一定的次序排成的一列数叫做数列数列中的每一个数叫做数列的项从开场的项起,按照自左至右排序,各项按照其位置依次叫做这个数列的第1项或首项,第2项,第3项,第n项,其中反映各项在数列中位置的数字1,2,3,n,分别叫做各项的项数质疑归纳强调答复及时了解学生知识掌握情况75*归纳小结 强化思想本次课学了哪些容?重点和难点各是什么?引导回忆*自我反思 目标检测 本次课采用了怎样的学习方法?你是如何进展学习的?你的学习效果如何?判断22是否为数列中的项,如果是,请指出是第几项提问巡视指导反思动手求解检验学生学习效果85*继续
10、探索 活动探究(1)读书局部:教材(2)书面作业:教材习题61 A组必做;61 B组选做(3)实践调查:用发现的眼睛寻找生活中的数列实例说明记录分层次要求90【教师教学后记】工程反思点学生知识、技能的掌握情况学生是否真正理解有关知识;是否能利用知识、技能解决问题;在知识、技能的掌握上存在哪些问题;学生的情感态度学生是否参与有关活动;在数学活动中,是否认真、积极、自信;遇到困难时,是否愿意通过自己的努力加以克制;学生思维情况学生是否积极思考;思维是否有条理、灵活;是否能提出新的想法;是否自觉地进展反思;学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实
11、践的情况学生是否愿意开展实践;能否根据问题合理地进展实践;在实践中能否积极思考;能否有意识的反思实践过程的方面【课题】 62 等差数列一【教学目标】知识目标:1理解等差数列的定义;2理解等差数列通项公式能力目标:通过学习等差数列的通项公式,培养学生处理数据的能力【教学重点】等差数列的通项公式 【教学难点】等差数列通项公式的推导【教学设计】本节的主要容是等差数列的定义、等差数列的通项公式.重点是等差数列的定义、等差数列的通项公式;难点是通项公式的推导等差数列的定义中,应特别强调等差的特点:(常数).例1是根底题目,有助于学生进一步理解等差数列的定义.教材中等差数列的通项公式的推导过程实际上是一个
12、无限次迭代的过程,所用的归纳方法是不完全归纳法.因此,公式的正确性还应该用数学归纳法加以证明.例2是求等差数列的通项公式及其中任一项的稳固性题目,注意求公差的方法.等差数列的通项公式中含有四个量:只要知道其中任意三个量,就可以求出另外的一个量【教学备品】教学课件【课时安排】2课时(90分钟)【教学过程】教 学 过 程教师行为学生行为教学意图时间*提醒课题62 等差数列*创设情境 兴趣导入【观察】将正整数中5的倍数从小到大列出,组成数列: 5,10,15,20, 1将正奇数从小到大列出,组成数列: 1,3,5,7,9, 2观察数列中相邻两项之间的关系,发现:从第2项开场,数列(1)中的每一项与它
13、前一项的差都是5;数列2中的每一项与它前一项的差都是2这两个数列的一个共同特点就是从第2项开场,数列中的每一项与它前一项的差都等于一样的常数介绍播放课件质疑引导分析了解观看课件思考自我分析从实例出发使学生自然的走向知识点引导式启发学生得出结果05*动脑思考 探索新知如果一个数列从第2项开场,每一项与它前一项的差都等于同一个常数,则,这个数列叫做等差数列这个常数叫做等差数列的公差,一般用字母d表示由定义知,假设数列为等差数列,为公差,则,即6.1总结归纳仔细分析讲解关键词语思考理解记忆带着学生分析10*稳固知识 典型例题例等差数列的首项为12,公差为5,试写出这个数列的第2项到第5项解由于,因此
14、;说明强调引领讲解说明观察思考主动求解通过例题进一步领会等差数列通项公式45*运用知识 强化练习 为等差数列,公差,试写出这个数列的第8项 写出等差数列11,8,5,2,的第10项.提问巡视指导动手求解及时了解学生知识掌握得情况25*创设情境 兴趣导入你能很快地写出例1中数列的第101项吗显然,依照公式6.1写出数列的第101项,是比拟麻烦的,如果求出数列的通项公式,就可以方便地直接求出数列的第101项质疑引导分析思考参与分析从实际事例使学生自然的走向知识点30*动脑思考 探索新知设等差数列的公差为d,则依此类推,通过观察可以得到等差数列的通项公式 (6.2)知道了等差数列中的和,利用公式6.
15、2,可以直接计算出数列的任意一项.在例的等差数列中,所以数列的通项公式为,数列的第101项为【想一想】等差数列的通项公式中,共有四个量:、和,只要知道了其中的任意三个量,就可以求出另外的一个量. 针对不同情况,应该分别采用什么样的计算方法?总结归纳仔细分析讲解关键词语思考归纳理解记忆带着学生总结问题得到等差数列通项公式引导启发学生思考求解35*稳固知识 典型例题例2 求等差数列的第50项.解 由于所以通项公式为即 故例3 在等差数列中,公差求首项解 由于公差故设等差数列的通项公式为由于,故,解得【小提示】此题目初看是知道2个条件,实际上是3个条件:,例4 小明、小明的爸爸和小明的爷爷三个人在年
16、龄恰好构成一个等差数列,他们三人的年龄之和为120岁,爷爷的年龄比小明年龄的4倍还多5岁,求他们祖三人的年龄.分析 知道三个数构成等差数列,并且知道这三个数的和,可以将这三个数设为,这样可以方便地求出,从而解决问题.解 设小明、爸爸和爷爷的年龄分别为,其中为公差则解得 从而答 小明、爸爸和爷爷的年龄分别为15岁、40岁和65岁.【注意】将构成等差数列的三个数设为,是经常使用的方法.说明强调引领讲解说明引领分析强调含义说明观察思考主动求解观察思考求解领会思考求解通过例题进一步领会注意观察学生是否理解知识点反复强调4550*运用知识 强化练习 练习1.求等差数列,1, ,的通项公式与第15项2.在
17、等差数列中,求与公差.3.在等差数列中,判断48是否为数列中的项,如果是,请指出是第几项.启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳60*理论升华 整体建构思考并答复下面的问题:等差数列的通项公式是什么?结论:等差数列的通项公式质疑归纳强调小组讨论答复理解强化及时了解学生知识掌握情况以小组讨论师生共同归纳的形式强调重点突破难点70*归纳小结 强化思想本次课学了哪些容?重点和难点各是什么?引导回忆*自我反思 目标检测 本次课采用了怎样的学习方法?你是如何进展学习的?你的学习效果如何?写出等差数列,1,的通项公式,并求出数列的第11项提问巡视指导反思动手求解检验学生学习效果培养学
18、生总结反思学习过程的能力80*继续探索 活动探究(1)读书局部:教材(2)书面作业:教材习题62必做;学习指导63选做(3)实践调查:寻找生活中等差数列的实例说明记录分层次要求90【教师教学后记】工程反思点学生知识、技能的掌握情况学生是否真正理解有关知识;是否能利用知识、技能解决问题;在知识、技能的掌握上存在哪些问题;学生的情感态度学生是否参与有关活动;在数学活动中,是否认真、积极、自信;遇到困难时,是否愿意通过自己的努力加以克制;学生思维情况学生是否积极思考;思维是否有条理、灵活;是否能提出新的想法;是否自觉地进展反思;学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于
19、倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进展实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;【课题】 63 等比数列一【教学目标】知识目标:1理解等比数列的定义;2理解等比数列通项公式能力目标:通过学习等比数列的通项公式,培养学生处理数据的能力【教学重点】等比数列的通项公式 【教学难点】等比数列通项公式的推导【教学设计】本节的主要容是等比数列的定义,等比数列的通项公式.重点是等比数列的定义、等比数列的通项公式;难点是通项公式的推导等比数列与等差数列在容上相类似,要让学生利用比照的方法去理解和记忆,并弄清楚二者之间的区别和联系.等比数列的定义是推导通项公
20、式的根底,教学中要给以足够的重视.同时要强调等比的特点:(常数).例1是根底题目,有助于学生进一步理解等比数列的定义.与等差数列一样,教材中等比数列的通项公式的归纳过程实际上也是不完全归纳法,公式的正确性也应该用数学归纳法加以证明,这一点不需要给学生讲.等比数列的通项公式中含有四个量:,, , 只有知道其中任意三个量,就可以求出另外的一个量.教材中例2、例都是这类问题.注意:例3过两式相除求公比的方法是研究等比数列问题常用的方法.从例4可以看到,假设三个数成等比数列,则将这三个数设成是比拟好,因为这样设了以后,这三个数的积正好等于很容易将求出.【教学备品】教学课件【课时安排】2课时(90分钟)
21、【教学过程】教 学 过 程教师行为学生行为教学意图时间*提醒课题63 等比数列*创设情境 兴趣导入【观察】*工厂今年的产值是1000万元,如果通过技术改造,在今后的5年,每年的产值都比上一年增加10%,则今年及以后5年的产值构成下面的一个数列单位:万元: 不难发现,从第2项开场,数列中的各项都是其前一项的1.1倍,即从第2项开场,每一项与它的前一项的比都等于1.1介绍播放课件质疑引导分析了解观看课件思考自我分析从实例出发使学生自然的走向知识点05*动脑思考 探索新知【新知识】如果一个数列从第2项开场,每一项与它前一项的比都等于同一个常数,则这个数列叫做等比数列这个常数叫做这个等比数列的公比,一
22、般用字母q来表示由定义知,假设为等比数列,q为公比,则与q均不为零,且有,即 (6.5) 总结归纳仔细分析讲解关键词语思考理解记忆带着学生分析引导式启发学生得出结果10*稳固知识 典型例题例在等比数列中,求、解【试一试】你能很快地写出这个数列的第项吗?说明强调引领讲解说明观察思考主动求解通过例题进一步领会15*运用知识 强化练习 练习1在等比数列中,试写出、2写出等比数列的第项与第6项提问巡视指导动手求解及时了解学生知识掌握得情况25*创设情境 兴趣导入如何写出一个等比数列的通项公式呢?质疑引导分析思考参与分析学生自然的走向知识点30*动脑思考 探索新知与等差数列相类似,我们通过观察等比数列各
23、项之间的关系,分析、探求规律设等比数列的公比为q,则【说明】 依此类推,得到等比数列的通项公式:6.6知道了等比数列中的和,利用公式6.6,可以直接计算出数列的任意一项.【想一想】等比数列的通项公式中,共有四个量:、和,只要知道了其中的任意三个量,就可以求出另外的一个量. 针对不同情况,应该分别采用什么样的计算方法?总结归纳仔细分析讲解关键词语思考归纳理解记忆带着学生总结问题得到等差数列通项公式引导启发学生思考求解35*稳固知识 典型例题例2求等比数列的第10项解 由于 ,故,数列的通项公式为,所以 例3 在等比数列中,求解 由有, 1, 22式的两边分别除以(1)式的两边,得,由此得将代人1
24、,得,所以,数列的通项公式为 故【注意】 本例题求解过程中,通过两式相除求出公比的方法是研究等比数列问题的常用方法【想一想】在等比数列中,求时,你有没有比拟简单的方法?【知识稳固】例4 小明、小刚和小强进展钓鱼比赛,他们三人钓鱼的数量恰好组成一个等比数列他们三人一共钓了14条鱼,而每个人钓鱼数量的积为64 并且知道,小强钓的鱼最多,小明钓的鱼最少,问他们三人各钓了多少条鱼?分析 知道三个数构成等比数列,并且知道这三个数的积,可以将这三个数设为,这样可以方便地求出,从而解决问题.解 设小明、小刚和小强钓鱼的数量分别为则解得或当时此时三个人钓鱼的条数分别为2、4、8.当时此时三个人钓鱼的条数分别为
25、8、4、2.由于小明钓的鱼最少,小强钓的鱼最多,故小明钓了2条鱼,小刚钓了4条鱼,小强钓了8条鱼【注意】将构成等比数列的三个数设为,是经常使用的方法说明强调引领讲解说明引领分析强调含义说明引领分析强调含义说明观察思考主动求解观察思考求解领会思考求解观察思考求解领会思考通过例题进一步领会注意观察学生是否理解知识点反复强调注意观察学生是否理解知识点反复强调4550*运用知识 强化练习 1.求等比数列.的通项公式与第7项2.在等比数列中,,判断是否为数列中的项,如果是,请指出是第几项. 启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳60*理论升华 整体建构思考并答复下面的问题:等比数列
26、的通项公式是什么结论:质疑归纳强调答复理解强化及时了解学生知识掌握情况70*归纳小结 强化思想本次课学了哪些容?重点和难点各是什么?引导回忆*自我反思 目标检测 本次课采用了怎样的学习方法?你是如何进展学习的?你的学习效果如何?等比数列中,求解答1 由条件得解方程组得 ,因此 解答2 由得所以提问巡视指导反思动手求解检验学生学习效果培养学生总结反思学习过程的能力80*继续探索 活动探究(1)读书局部:教材(2)书面作业:教材习题63A组必做;教材习题63B组选做(3)实践调查:用等比数列的通项公式解决生活中的一个问题说明记录分层次要求90【教师教学后记】工程反思点学生知识、技能的掌握情况学生是
27、否真正理解有关知识;是否能利用知识、技能解决问题;在知识、技能的掌握上存在哪些问题;学生的情感态度学生是否参与有关活动;在数学活动中,是否认真、积极、自信;遇到困难时,是否愿意通过自己的努力加以克制;学生思维情况学生是否积极思考;思维是否有条理、灵活;是否能提出新的想法;是否自觉地进展反思;学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进展实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;【课题】7.1 平面向量的概念及线性运算【教学目标】知识目标:1了解向量、向量的相等、共线向量等概念;
28、2掌握向量、向量的相等、共线向量等概念能力目标:通过这些容的学习,培养学生的运算技能与熟悉思维能力【教学重点】向量的线性运算 【教学难点】两个向量,求这两个向量的差向量以及非零向量平行的充要条件【教学设计】从不同方向的力作用于小车,产生运动的效果不同的实际问题引入概念向量不同于数量,数量是只有大小的量,而向量既有大小、又有方向教材中用有向线段来直观的表示向量,有向线段的长度叫做向量的模,有向线段的方向表示向量的方向数量可以比拟大小,而向量不能比拟大小,记号ab没有意义,而ab才是有意义的.教材通过生活实例,借助于位移来引入向量的加法运算向量的加法有三角形法则与平行四边形法则.向量的减法是在负向
29、量的根底上,通过向量的加法来定义的.即a-b=a+(-b),它可以通过几何作图的方法得到,即a-b可表示为从向量b 的终点指向向量a的终点的向量.作向量减法时,必须将两个向量平移至同一起点.实数乘以非零向量a,是数乘运算,其结果记作,它是一个向量,其方向与向量a一样,其模为的倍由此得到对向量共线的充要条件,要特别注意非零向量a、b与等条件.【教学备品】教学课件【课时安排】2课时(90分钟)【教学过程】教 学 过 程教师行为学生行为教学意图时间*提醒课题7.1 平面向量的概念及线性运算*创设情境 兴趣导入如图71所示,用100N的力,按照不同的方向拉一辆车,效果一样吗?图71介绍播放课件引导分析
30、了解观看课件思考自我分析从实例出发使学生自然的走向知识点03*动脑思考 探索新知【新知识】在数学与物理学中,有两种量只有大小,没有方向的量叫做数量标量,例如质量、时间、温度、面积、密度等既有大小,又有方向的量叫做向量矢量,例如力、速度、位移等平面上带有指向的线段有向线段叫做平面向量,线段的指向就是向量的方向,线段的长度表示向量的大小如图7-2所示,有向线段的起点叫做平面向量的起点,有向线段的终点叫做平面向量的终点以A为起点,B为终点的向量记作也可以使用小写英文字母,印刷用黑体表示,记作a;手写时应在字母上面加箭头,记作 aAB 图72向量的大小叫做向量的模向量a,的模依次记作,模为零的向量叫做
31、零向量记作0,零向量的方向是不确定的模为1的向量叫做单位向量总结归纳仔细分析讲解关键词语思考理解记忆带着学生分析引导式启发学生得出结果10*稳固知识 典型例题例1 一架飞机从A处向正南方向飞行200km,另一架飞机从A处朝北偏东45方向飞行200km, 两架飞机的位移一样吗?分别用有向线段表示两架飞机的位移abA解 位移是向量虽然这两个向量的模相等,但是它们的方向不同,所以两架飞机的位移不一样两架飞机位移的有向线段表示分别为图7-3中的有向线段a 与b 图7-3说明强调引领讲解说明强调含义观察思考主动求解通过例题进一步领会13*运用知识 强化练习 KTK图74ABCDEFHGMNQPLZ说出以
32、下图中各向量的模,并指出其中的单位向量 (小方格为1) 提问巡视指导思考口答及时了解学生知识掌握得情况18*创设情境 兴趣导入观察图74中的向量与,它们所在的直线平行,两个向量的方向一样;向量与所在的直线平行,两个向量的方向相反播放课件质疑引导分析观看课件自我分析从实例出发使学生自然的走向知识点20*动脑思考 探索新知【新知识】方向一样或相反的两个非零向量叫做互相平行的向量向量与向量b平行记作/b规定:零向量与任何一个向量平行由于任意一组平行向量都可以平移到同一条直线上,因此相互平行的向量又叫做共线向量【想一想】图74中,哪些向量是共线向量?总结归纳仔细分析讲解关键词语思考归纳理解记忆带着学生
33、总结23*动脑思考 探索新知【新知识】图74中的平行向量与,方向一样,模相等;平行向量与,方向相反,模相等我们所研究的向量只有大小与方向两个要素当向量a与向量b的模相等并且方向一样时,称向量a与向量b相等,记作a= b 也就是说,向量可以在平面任意平移,具有这种性质的向量叫做自由向量与非零向量的模相等,且方向相反的向量叫做向量的负向量,记作规定:零向量的负向量仍为零向量显然,在图74中,=,= 总结归纳仔细分析讲解关键词语思考归纳理解记忆思考归纳理解记忆28*稳固知识 典型例题例2 在平行四边形ABCD中图75,O为对角线交点ADCB图75O1找出与向量相等的向量;2找出向量的负向量;3找出与
34、向量平行的向量分析 要结合平行四边形的性质进展分析两个向量相等,它们必须是方向一样,模相等;两个向量互为负向量,它们必须是方向相反,模相等;两个平行向量的方向一样或相反解 由平行四边形的性质,得1=;2=,;3/,/,/说明强调引领讲解说明引领强调含义说明观察思考主动求解观察思考求解领会思考求解通过例题进一步领注意观察学生是否理解知识点反复强调+33*运用知识 强化练习 1如图,ABC中,D、E、F分别是三边的中点,试写出1与相等的向量;2与共线的向量FADBEC练习题111第2题图第1题图EFABCDO图18第2题图2如图,O点是正六边形ABCDEF的中心,试写出1与相等的向量; 2的负向量
35、; 3与共线的向量启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳38*创设情境 兴趣导入王涛同学从家中A处出发,向正南方向行走500 m到达超市B处,买了文具后,又沿着北偏东60角方向行走200 m到达学校C处如图76王涛同学这两次位移的总效果是从家A处到达了学校C处ABC图76500m200m播放课件质疑引导分析观看课件自我分析从实例出发使学生自然的走向知识点42*动脑思考 探索新知位移叫做位移与位移的和,记作=+图77ACBaba+bab一般地,设向量a与向量b不共线,在平面上任取一点A(如图76),依次作=a, =b,则向量叫做向量a与向量b的和,记作ab ,即 ab =
36、71求向量的和的运算叫做向量的加法上述求向量的和的方法叫做向量加法的三角形法则观察图77可以看到:依照三角形法则进展向量a与向量b的加法运算,运算的结果仍然是向量,叫做a与b的和向量其和向量的起点是向量a的起点,终点是向量b 的终点【做一做】给出两个不共线的向量a和b,画出它们的和向量【想一想】1ab与ba相等吗?请画出图来说明2如果向量a和向量b共线,如何画出它们的和向量?总结归纳仔细分析讲解关键词语思考归纳理解记忆带着学生总结50*动脑思考 探索新知如图79所示, ABCD为平行四边形,由于=,根据三角形法则得图79ADCB=这说明,在平行四边形ABCD中,所表示的向量就是与的和这种求和方
37、法叫做向量加法的平行四边形法则平行四边形法则不适用于共线向量,可以验证,向量的加法具有以下的性质:1a0 = 0a = a; aa= 0;2ab=ba;3ab c = a bc总结归纳仔细分析讲解关键词语思考归纳理解记忆带着学生总结55*稳固知识 典型例题例3 一艘船以12 km/h的速度航行,方向垂直于河岸,水流速度为5 km/h,求该船的实际航行速度ABDC图710解 如图710所示,表示船速,为水流速度,由向量加法的平行四边形法则,是船的实际航行速度,显然=13又,利用计算器求得即船的实际航行速度大小是13km/h,其方向与河岸线(水流方向)的夹角约*例4 用两条同样的绳子挂一个物体图7
38、11设物体的重力为k,两条绳子与垂线的夹角为,求物体受到沿两条绳子的方向的拉力与的大小分析 由于两条同样的绳子与竖直垂线所成的角都是,所以解决问题不考虑其它因素,只考虑受力的平衡,所以.解 利用平行四边形法则,可以得到F1F2k图711,所以 【想一想】根据例题4的分析,判断在单杠上悬挂身体时(如图712),两臂成什么角度时,双臂受力最小? 图7-12说明强调引领讲解说明引领分析讲解说明观察思考主动求解观察思考求解领会思考求解注意观察学生是否理解知识点反复强调62*运用知识 强化练习练习如图,a,b,求ab图115bbaa1 2第1题图2填空向量如下图:1ab =_ ,2bc =_ ,3abc
39、 =_ 3计算: 1; 2启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳65*创设情境 兴趣导入在进展数学运算的时候,减去一个数可以看作加上这个数的相反数质疑引导分析思考参与分析引导启发学生思考66*动脑思考 探索新知与数的运算相类似,可以将向量a与向量b的负向量的和定义为向量a与向量b的差即a b = a(b)设a,b,则即 = 72观察图713可以得到:起点一样的两个向量a、 b,其差ab仍然是一个向量,叫做a与b的差向量,其起点是减向量b的终点,终点是被减向量a的终点aAa-bBbO图713总结归纳仔细分析讲解关键词语思考归纳理解记忆带着学生总结68*稳固知识 典型例题例5
40、 如图7141所示向量a 、b ,请画出向量abBbOaAba12图714解 如图7142所示,以平面上任一点O为起点,作=a,=b,连接BA,则向量为所求的差向量,即= ab 【想一想】当a与 b共线时,如何画出ab 强调含义说明思考求解领会思考求解注意观察学生是否理解知识点70*运用知识 强化练习1填空:1=_,2=_,3=_2如图,在平行四边形ABCD中,设= a,= b,试用a, b表示向量、启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳72*创设情境 兴趣导入观察图715可以看出,向量与向量a共线,并且3aaaaaOABC图715质疑引导分析思考参与分析引导启发学生思考
41、74*动脑思考 探索新知一般地,实数与向量a的积是一个向量,记作a,它的模为 73假设0,则当0时,a的方向与a的方向一样,当0时,a的方向与a的方向相反由上面定义可以得到,对于非零向量a、b,当时,有 74一般地,有0a= 0, 0 = 0 数与向量的乘法运算叫做向量的数乘运算,容易验证,对于任意向量a, b及任意实数,向量数乘运算满足如下的法则:【做一做】请画出图形来,分别验证这些法则向量加法及数乘运算在形式上与实数的有关运算规律相类似,因此,实数运算中的去括号、移项、合并同类项等变形,可直接应用于向量的运算中但是,要注意向量的运算与数的运算的意义是不同的总结归纳仔细分析讲解关键词语思考归
42、纳理解记忆理解记忆带着学生分析引导启发学生得出结论78*稳固知识 典型例题例6 在平行四边形ABCD中,O为两对角线交点如图716,a,b,试用a, b表示向量、分析 因为,,所以需要首先分别求出向量与.图716解ab,ba,因为O分别为AC,BD的中点,所以abab,baa+b例6中,ab和a+b都叫做向量a,b的线性组合,或者说,、可以用向量a,b线性表示一般地,ab叫做a, b的一个线性组合其中,均为系数如果l a b,则称l可以用a,b线性表示向量的加法、减法、数乘运算都叫做向量的线性运算强调含义说明思考求解领会思考求解注意观察学生是否理解知识点81*运用知识 强化练习1计算:13a2
43、 b22 ab;23 a23 a4 b3ab2设a, b不共线,求作有向线段,使ab启发引导提问巡视指导思考了解动手求解可以交给学生自我发现归纳83*理论升华 整体建构思考并答复下面的问题:向量、向量的模、向量相等是如何定义的?结论:当一种量既有大小,又有方向,例如力、速度、位移等,这种量叫做向量矢量向量的大小叫做向量的模向量a,的模依次记作,a与向量b的模相等并且方向一样时,称向量a与向量b相等,记作a= b 质疑归纳强调答复及时了解学生知识掌握情况85*归纳小结 强化思想本次课学了哪些容?重点和难点各是什么?引导回忆*自我反思 目标检测 本次课采用了怎样的学习方法?你是如何进展学习的?你的
44、学习效果如何?计算: 1; 2提问巡视指导反思动手求解检验学生学习效果88*继续探索 活动探究(1)读书局部:教材(2)书面作业:教材习题71 A组必做;71 B组选做(3)实践调查:试着用向量的观点解释生活中的一些问题说明记录分层次要求90【教师教学后记】工程反思点学生知识、技能的掌握情况学生是否真正理解有关知识;是否能利用知识、技能解决问题;在知识、技能的掌握上存在哪些问题;学生的情感态度学生是否参与有关活动;在数学活动中,是否认真、积极、自信;遇到困难时,是否愿意通过自己的努力加以克制;学生思维情况学生是否积极思考;思维是否有条理、灵活;是否能提出新的想法;是否自觉地进展反思;学生合作交
45、流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进展实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;【课题】7.2 平面向量的坐标表示【教学目标】知识目标:1了解向量坐标的概念,了解向量加法、减法及数乘向量运算的坐标表示;2了解两个向量平行的充要条件的坐标形式.能力目标:培养学生应用向量知识解决问题的能力.【教学重点】向量线性运算的坐标表示及运算法则.【教学难点】向量的坐标的概念.采用数形结合的方法进展教学是突破难点的关键.【教学设计】向量只有模与方向两个要素,为了研究方便,我们首先将向量的起点放置
46、在坐标原点一般称为位置向量设轴的单位向量为,轴的单位向量为如果点A的坐标为,,则,将有序实数对,叫做向量的坐标记作=,例1是关于向量坐标概念的知识稳固性例题要强调此时起点的位置让学生认识到,当向量的起点为坐标原点时,其终点的坐标就是向量的坐标例2是关于向量线性运算的坐标表示的知识稳固性例题要强调与公式的对应在研究起点为坐标原点的向量的根底上,利用向量加法的三角形法则,介绍起点在任意位置的向量的坐标表示,向量的坐标等于原点到终点的向量的坐标减去原点到起点的向量的坐标,由此得到公式7.8.数值上可以简单记为:终点的坐标减去起点的坐标例3是关于起点在任意位置的向量的坐标表示的稳固性例题要强调终点的坐
47、标减去起点的坐标【教学备品】教学课件【课时安排】2课时(90分钟)【教学过程】教 学 过 程教师行为学生行为教学意图时间*提醒课题7.2 平面向量的坐标表示*创设情境 兴趣导入【观察】设平面直角坐标系中,*轴的单位向量为i, y轴的单位向量为j,为从原点出发的向量,点A的坐标为2,3(图717)则 图717,由平行四边形法则知【说明】 可以看到,从原点出发的向量,其坐标在数值上与向量终点的坐标是一样的介绍质疑引导分析了解思考自我分析从实例出发使学生自然的走向知识点05*动脑思考 探索新知【新知识】设i, j分别为*轴、y轴的单位向量,1设点,则如图718(1);2设点如图718(2),则O*i
48、jM(*,y)y (1)jiBAOy* (2) 图718由此看到,对任一个平面向量a,都存在着一对有序实数,使得有序实数对叫做向量a的坐标,记作如图717所示,向量的坐标为如图7181所示,起点为原点,终点为的向量的坐标为如图7182所示,起点为终点为的向量坐标为75仔细分析讲解关键词语思考理解记忆引导式启发学生得出结果10*稳固知识 典型例题例1 如图719所示,用*轴与y轴上的单位向量i、j表示向量a、b, 并写出它们的坐标解 因为a 5i3j ,所以 同理可得 图719【想一想】观察图719,与的坐标之间存在什么关系?点,求的坐标解说明强调引领讲解说明观察思考主动求解通过例题进一步领会1
49、5*运用知识 强化练习 1 点A的坐标为2,3,写出向量的坐标,并用i与j的线性组合表示向量2 设向量,写出向量a的坐标3 A,B两点的坐标,求的坐标(1) (2) (3) 提问巡视指导思考口答及时了解学生知识掌握得情况20*创设情境 兴趣导入【观察】 观察图720,向量,可以看到,两个向量和的坐标恰好是这两个向量对应坐标的和图720质疑引导分析思考参与分析引导启发学生思考27*动脑思考 探索新知【新知识】设平面直角坐标系中,则所以 76类似可以得到 77 78总结归纳仔细分析讲解关键词语思考归纳理解记忆带着学生总结35*稳固知识 典型例题例3 设a(1,2), b(2,3),求以下向量的坐标
50、:(1) ab , (2) 3 a,(3) 3 a2 b解 (1)ab(1, 2)(2,3)(1,1) (2) 3 a3(1, 2)(3,6) (3) 3 a2b3(1, 2) 2(2,3)(3, 6) (4,6)(7, 12)说明强调引领讲解说明观察思考主动求解通过例题进一步领会45*运用知识 强化练习 向量a, b的坐标,求ab、 ab、2 a3 b的坐标a(2,3),b(1,1);a(1,0), b(4, 3);a(1,2),b(3,0)启发引导提问巡视指导思考了解动手求解及时了解学生知识掌握得情况55*创设情境 兴趣导入【问题】前面我们学习了公式7.4,知道对于非零向量a、b,当时,有
51、如何用向量的坐标来判断两个向量是否共线呢?引导分析观察思考思考参与分析引导启发学生思考60*动脑思考 探索新知【新知识】设由,有于是,即由此得到,对非零向量a、 b,设当时,有79总结归纳仔细分析讲解思考归纳理解记忆带着学生总结67*稳固知识 典型例题例4 设,判断向量a、 b是否共线解 由于32160,故由公式79知,即向量a、 b共线说明强调引领分析讲解说明观察思考主动求解通过例题进一步领会70*运用知识 强化练习 判断以下各组向量是否共线:a(2,3),b(1,);a(1, 1) ,b(2,2);a(2,1) ,b(1,2)启发引导提问巡视指导思考了解动手求解及时了解学生知识掌握得情况7
52、5*理论升华 整体建构思考并答复下面的问题:向量坐标的概念?任意起点的向量的坐标表示?共线向量的坐标表示?结论:一般地,设平面直角坐标系中,*轴的单位向量为i, y轴的单位向量为j,则对于从原点出发的任意向量a都有唯一一对实数*、y,使得有序实数对叫做向量a的坐标,记作向量的坐标等于原点到终点的向量的坐标减去原点到起点的向量的坐标.对非零向量a、 b,设当时,有质疑归纳强调答复及时了解学生知识掌握情况80*归纳小结 强化思想本次课学了哪些容?重点和难点各是什么?引导回忆*自我反思 目标检测 本次课采用了怎样的学习方法?你是如何进展学习的?你的学习效果如何?向量a, b的坐标,求ab、 ab、2
53、 a3 b的坐标 a(2,3),b=(1,1);提问巡视指导反思动手求解检验学生学习效果85*继续探索 活动探究(1)读书局部:教材(2)书面作业:教材习题7.2 A组必做;7.2 B组选做(3)实践调查:寻找生活中的向量坐标实例说明记录分层次要求90【教师教学后记】工程反思点学生知识、技能的掌握情况学生是否真正理解有关知识;是否能利用知识、技能解决问题;在知识、技能的掌握上存在哪些问题;学生的情感态度学生是否参与有关活动;在数学活动中,是否认真、积极、自信;遇到困难时,是否愿意通过自己的努力加以克制;学生思维情况学生是否积极思考;思维是否有条理、灵活;是否能提出新的想法;是否自觉地进展反思;
54、学生合作交流的情况学生是否善于与人合作;在交流中,是否积极表达;是否善于倾听别人的意见;学生实践的情况学生是否愿意开展实践;能否根据问题合理地进展实践;在实践中能否积极思考;能否有意识的反思实践过程的方面;【课题】7.3 平面向量的积【教学目标】知识目标:1了解平面向量积的概念及其几何意义.2了解平面向量积的计算公式.为利用向量的积研究有关问题奠定根底.能力目标:通过实例引出向量积的定义,培养学生观察和归纳的能力【教学重点】平面向量数量积的概念及计算公式.【教学难点】数量积的概念及利用数量积来计算两个非零向量的夹角【教学设计】教材从*人拉小车做功出发,引入两个向量积的概念需要强调力与位移都是向
55、量,而功是数量因此,向量的积又叫做数量积在讲述向量积时要注意:1向量的数量积是一个数量,而不是向量,它的值为两向量的模与两向量的夹角余弦的乘积.其符号是由夹角决定;2向量数量积的正确书写方法是用实心圆点连接两个向量.教材中利用定义得到积的性质后面的学习中会经常遇到,其中:1当0时,ab|a|b|;当时,ab|a|b|可以记忆为:两个共线向量,方向一样时积为这两个向量模的积;方向相反时积为这两个向量模的积的相反数2|a|显示出向量与向量的模的关系,是得到利用向量的坐标计算向量模的公式的根底;3cos,是得到利用两个向量的坐标计算两个向量所成角的公式的根底;4ab0ab经常用来研究向量垂直问题,是
56、推出两个向量积坐标表示的重要根底 【教学备品】教学课件【课时安排】2课时(90分钟)【教学过程】教 学 过 程教师行为学生行为教学意图时间*提醒课题7.3 平面向量的积*创设情境 兴趣导入Fs图721O如图721所示,水平地面上有一辆车,*人用100 N的力,朝着与水平线成角的方向拉小车,使小车前进了100 m则,这个人做了多少功?介绍质疑引导分析了解思考自我分析从实例出发使学生自然的走向知识点05*动脑思考 探索新知【新知识】我们知道,这个人做功等于力与在力的方向上移动的距离的乘积如图722所示,设水平方向的单位向量为i,垂直方向的单位向量为j,则i + y j ,即力F是水平方向的力与垂直
57、方向的力的和,垂直方向上没有产生位移,没有做功,水平方向上产生的位移为s,即WFcoss10010500 JO*ijF(*,y)y 图722BAO图723ab这里,力F与位移s都是向量,而功W是一个数量,它等于由两个向量F,s的模及它们的夹角的余弦的乘积,W叫做向量F与向量s的积,它是一个数量,又叫做数量积如图723,设有两个非零向量a,b,作a,b,由射线OA与OB所形成的角叫做向量a与向量b的夹角,记作两个向量a,b的模与它们的夹角的余弦之积叫做向量a与向量b的积,记作ab, 即 aba|b|cos (7.10)上面的问题中,人所做的功可以记作WFs.由积的定义可知a00, 0a0总结归纳
58、仔细分析讲解关键词语思考理解记忆带着学生分析引导式启发学生得出结果15由积的定义可以得到下面几个重要结果:当0时,ab|a|b|;当时,ab|a|b|.cos.当ba时,有0,所以aa|a|a|a|2,即|a|.当时,ab,因此,ab因此对非零向量a,b,有ab0ab.可以验证,向量的积满足下面的运算律:abba()b(ab)a(b)(ab)cacbc注意:一般地,向量的积不满足结合律,即a(bc)abc.请结合实例进展验证.总结归纳仔细分析讲解关键词语思考理解记忆带着学生分析反复强调30*稳固知识 典型例题例1 |a|3,|b|2, ,求ab解ab|a|b| cos 32cos3例2 |a|
59、b|,ab,求解 cos.由于 0,所以 说明强调引领思考主动求解注意观察学生是否理解知识点40*运用知识 强化练习 1. |a|7,|b|4,a和b的夹角为,求ab2. aa9,求|a|3. |a|2,|b|3, ,求(2ab)b提问巡视指导思考口答及时了解学生知识掌握得情况45*动脑思考 探索新知设平面向量a(*1,y1),b(*2,y2),i,j分别为*轴,y轴上的单位向量,由于ij,故ij 0,又| i |j|1,所以ab(*1 iy1j) (*2 iy2j) *1*2ii *1y2ij *2y1 ij y1y2jj *1*2 |j|2 y1y2 |j|2 *1*2 y1y2这就是说,
60、两个向量的积等于它们对应坐标乘积的和,即 ab *1*2y1y2 (7.11)利用公式(711)可以计算向量的模设a(*,y),则,即(7.12)由平面向量积的定义可以得到,当a、b是非零向量时,cos. (7.13)利用公式(7.13)可以方便地求出两个向量的夹角.由于abab0,由公式(7.11)可知ab0*1*2 y1y20因此ab*1*2 y1y20(7.14)利用公式(7.14)可以方便地利用向量的坐标来研究向量垂直的问题总结归纳仔细分析讲解关键词语思考归纳理解记忆带着学生总结60*稳固知识 典型例题例3 求以下向量的积:a (2,3), b(1,3);a (2, 1), b(1,2
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高尔夫球场使用协议三篇
- 兰州城市学院《生态工程学》2023-2024学年第一学期期末试卷
- 生物学科知识体系建设计划
- 课程实施中的问题解决计划
- 大班学习时间安排计划
- 委托生产合同模板三篇
- 兰考三农职业学院《麻醉拔牙及齿槽外科学》2023-2024学年第一学期期末试卷
- 精细化检验科工作流程的改进思路计划
- 质量改进计划
- 昆玉职业技术学院《生物统计学A》2023-2024学年第一学期期末试卷
- 持续质量改进提高雾化吸入正确率课件讲义
- DB4403-T 242-2022可移动模块化厨房建设与管理规范
- 主题班会-文明用语课件
- 一例慢阻肺病人护理个案
- 《茶馆》-精讲版课件
- 2021年省交通控股集团有限公司校园招聘笔试试题及答案解析
- 口腔百问百答
- 国开作业管理学基础#-第三章 本章自测题66参考
- 设备检修维护记录表
- 排泄物、分泌物及体液检验方法和病例分析
- 合同责任分解及交底表1-5
评论
0/150
提交评论