数字信号处理英文版课件:Chap 7 LTI Discrete-Time Systems in the Transform Domain_第1页
数字信号处理英文版课件:Chap 7 LTI Discrete-Time Systems in the Transform Domain_第2页
数字信号处理英文版课件:Chap 7 LTI Discrete-Time Systems in the Transform Domain_第3页
数字信号处理英文版课件:Chap 7 LTI Discrete-Time Systems in the Transform Domain_第4页
数字信号处理英文版课件:Chap 7 LTI Discrete-Time Systems in the Transform Domain_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 Chapter 7 LTI Discrete-Time Systems in the Transform Domain Transfer function classification based on magnitude characteristics Lowpass, Highpass,etc. transfer functions Allpass transfer functions Types of linear-phase FIR transfer functions Transfer function classification based on phase character

2、istics Minimum-phase transfer functions Linear-phase transfer functionsDSP group 2007 chap7-ed12 7.1 Transfer function classification based on magnitude characteristicsOr For stable systems:DSP group 2007 chap7-ed13 7.1.1 Digital Filters with Ideal Magnitude Response The range of frequencies where t

3、he frequency response takes the value of one is called the pass-band The range of frequencies where the frequency response takes the value of zero is called the stop-band Has a zero phase everywhere (in all frequencies). There are four popular types of ideal digital filters with real impulse respons

4、e coefficients :DSP group 2007 chap7-ed14 7.1.1 Digital Filters with Ideal Magnitude ResponseccHHP( e j )10ccHLP( e j )10HBP( e j )10c2c1c1c2HBS( e j )10c2c1c1c2LowpassBandstop HighpassBandpassDSP group 2007 chap7-ed15 7.1.1 Digital Filters with Ideal Magnitude ResponseccHLP( e j )10 Impulse respons

5、e Characteristics Doubly infinite length and not causal; Cannot be realized by an LTI filter with a transfer function of finite order .DSP group 2007 chap7-ed16 7.1.1 Digital Filters with Ideal Magnitude Response Other types of filters have the same characteristics as the ideal lowpass digital filte

6、r. Transition band was relaxed; The magnitude of response is allowed to vary by a small amount both in passband and stopband. Methods to develop stable and realizable digital filters: DSP group 2007 chap7-ed17 7.1.2 Bounded real transfer function A causal stable real-coefficient transfer function H(

7、z) is defined as a bounded real (BR) transfer function if|H (e j)| 1 for all values of (7.2)Example 7.1 Consider the causal stable IIR transfer function:where K, is a real constant.DSP group 2007 chap7-ed18 7.1.2 Bounded real transfer function Its square-magnitude function isSolution: Maximum value

8、of square-magnitude function isFor 0:DSP group 2007 chap7-ed19 7.1.2 Bounded real transfer functionLowpass filterHighpass filterDSP group 2007 chap7-ed110 7.1.2 Bounded real transfer function Property of BR transfer functions: Let xn and yn are the input and output of a digital filter characterized

9、by a BR transfer function H(z) respectively, their DTFTs are X(ej) and Y(ej), then Using Parsevals relation, BR system is a passive systemDSP group 2007 chap7-ed111 7.1.3 Allpass transfer function DefinitionAn llR transfer function A(z) with unity magnitude response for all frequencies , i . e . , A

10、n M-th order causal real-coefficient allpass transfer function is of the formDSP group 2007 chap7-ed112 7.1.3 Allpass transfer function denote:Then : Or in zero and pole form:mirror-image polynomial13 7.1.3 Allpass transfer functionExample All zeros of a causal stable allpass transfer function must

11、lie outside the unit circle in a mirror- image symmetry with its poles situated inside the unit circle.DSP group 2007 chap7-ed114 7.1.3 Allpass transfer functionproperties The phase of the allpass transfer function00.20.40.60.81-4-2024w / Phase, degreesPrincipal value of phase of A3(z) Note: the dis

12、continuity by the amount of 2 in the phase (). A causal stable allpass filterDSP group 2007 chap7-ed115 7.1.3 Allpass transfer functionpropertiesThe unwrapped phase function c() is a continuous function of : Note1: The unwrapped phase function c() is monotonically decreasing in the range 0 .DSP grou

13、p 2007 chap7-ed116 7.1.3 Allpass transfer functionproperties Note 2: The unwrapped phase function c() is nonpositive, i.e. c() 0 in the range 0 . Note 3: The group delay is always positive in the range 0 .Eg: 1-st order allpass filter P311DSP group 2007 chap7-ed117 7.1.3 Allpass transfer functionpro

14、perties(1) A causal stable real-coefficient allpass transfer function is a lossless bounded real (LBR) function or, equivalently , a causal stable allpass filter is a lossless structure(2) The magnitude function of a stable allpass function A(z) satisfies:DSP group 2007 chap7-ed118 7.1.3 Allpass tra

15、nsfer functionproperties(3) The group delay function g() of a causal stable real-coefficient allpass filter AM(z) is everywhere positive in the range 0 , and satisfies,DSP group 2007 chap7-ed119 7.1.3 Allpass transfer function- application delay equalizerG(z)A(z) transfer function of the total syste

16、m:H(z)= G(z) A(z) Frequency response of the overall system:H( e j)= G(e j) A(e j) h( )= g( ) + a( )Causal stable systemAllpassDSP group 2007 chap7-ed120 7.1.3 Allpass transfer function Example of application4th order filter with the specifications:P314 Fig 7.8DSP group 2007 chap7-ed121 7.2 Transfer

17、function classification based on Phase Characteristics7.2.1 zero-phase Transfer-functionAn ideal lowpass filter with frequency response:ccHLP( e j )10The phase function is:Linear-phaseDSP group 2007 chap7-ed122 7.2.2 Linear-phase Transfer-function Frequency response magnitude response: phase respons

18、e: group delay: relation between the output yn and input xn :DSP group 2007 chap7-ed123 7.2.3 Minimum-Phase and Maximum -Phase Transfer Functions DefinitionsConsider the two 1st-order transfer functions :H1(z)H2(z)DSP group 2007 chap7-ed124 7.2.3 Minimum-Phase and Maximum -Phase Transfer Functions s

19、quare-magnitude response phase responseDSP group 2007 chap7-ed125 7.2.3 Minimum-Phase and Maximum -Phase Transfer Functions unwrapped phase response curvesa = 0.8 and b 0.5/Phase in radiansH2(z) has an excess phase lag with respect to H1(z) relation between H1(z) and H2(z) Stable allpass systemDSP g

20、roup 2007 chap7-ed126 7.2.3 Minimum-Phase and Maximum -Phase Transfer Functions Conclusion: Let Hmin(z) be a causal stable transfer function with all zeros inside the unit circle and let H(z) be another causal stable transfer function with the same magnitude response as Hmin(z) , i.eThen Where A(z)

21、is a stable allpass transfer function.DSP group 2007 chap7-ed127 7.2.3 Minimum-Phase and Maximum -Phase Transfer Functions Conclusion:H(z) has an excess phase lag with respect to Hmin(z). Minimum-phase transfer function A causal stable transfer function with all zeros inside the unit circle is calle

22、d a minimum-phase transfer function. Maximum-phase transfer function A causal stable transfer function with all zeros outside the unit circle is called a maximum-phase transfer function.DSP group 2007 chap7-ed128 7.2.3 Minimum-Phase and Maximum -Phase Transfer Functions Mixed-phase transfer function

23、 A causal stable transfer function with zeros inside and outside the unit circle is called a mixed-phase transfer function.Example 7.4 Consider the mixed-phase transfer function:DSP group 2007 chap7-ed129 7.2.3 Minimum-Phase and Maximum -Phase Transfer Functions exampleRewrite it as: Properties of m

24、inimum-phase system (compared with the systems of the same magnitude response): the smallest group delay; the smallest phase lag; the smallest energy lag.DSP group 2007 chap7-ed130 lossless systemG(z)Gc(z)Causal stable system the overall system :A(z)= G(z) Gc(z) Frequency response of the overall sys

25、tem:A( e j)= G(e j) Gc (e j)A(z);allpass|A( e j)|=1 magnitude response of the overall system : 7.2.3 Minimum-Phase and Maximum -Phase Transfer Functions example31 7.1.3 Allpass transfer function Example of applicationEg.A3: Assume Let: causal and stable32 7.1.3 Allpass transfer function Example of a

26、pplicationAllpassMinimum-phase systemInverse systemDSP group 2007 chap7-ed133 7.3 Types of Linear-Phase Transfer Function7.3.1 Frequency Response for a FIR Filter with a Linear-PhaseWhere: c and are constants, A() amplitude response/zero-phase response; it is a real function of .DSP group 2007 chap7

27、-ed134 7.3.1 Frequency Response for a FIR Filter with a Linear-Phase For real impulse response hnOr Or P323 DSP group 2007 chap7-ed135 7.3.1 Frequency Response for a FIR Filter with a Linear-PhaseThe FIR filter with an even amplitude response will have a linear phase if it has a symmetric impulse re

28、sponseA FIR filter with an odd amplitude response will have linear phase if it has an antisymmetric impulse responseDSP group 2007 chap7-ed136 7.3.1 Frequency Response for a FIR Filter with a Linear-Phase Four Types of Linear-Phase FIR FilterN evenN oddType 1Type 2Type 3Type 4Where : 0 n N DSP group

29、 2007 chap7-ed137 7.3.1 Frequency Response for a FIR Filter with a Linear-Phase Type 1 Linear-Phase FIR Filter0 n N and N is even.Type 1: N = 8DSP group 2007 chap7-ed138 7.3.1 Frequency Response for a FIR Filter with a Linear-Phase Type 1 phase function group delay magnitude function:DSP group 2007

30、chap7-ed139 7.3.1 Frequency Response for a FIR Filter with a Linear-Phase Type 2 Linear-Phase FIR Filter0 n N and N is odd.Type 2: N = 7DSP group 2007 chap7-ed140 7.3.1 Frequency Response for a FIR Filter with a Linear-Phase Type 2 phase function group delay magnitude functionDSP group 2007 chap7-ed

31、141 7.3.1 Frequency Response for a FIR Filter with a Linear-Phase Type 3 Linear-Phase FIR Filter0 n N and N is even.Type 3: N = 8DSP group 2007 chap7-ed142 7.3.1 Frequency Response for a FIR Filter with a Linear-Phase Type 3 phase function group delay magnitude function:DSP group 2007 chap7-ed143 7.

32、3.1 Frequency Response for a FIR Filter with a Linear-Phase Type 4 Linear-Phase FIR Filter0 n N and N is odd.Type 2: N = 7DSP group 2007 chap7-ed144 7.3.1 Frequency Response for a FIR Filter with a Linear-Phase Type 4 phase function group delay magnitude function45 7.3.1 Frequency Response for a FIR

33、 Filter with a Linear-Phase ExampleExample A: modified moving-average system:00.20.40.60.8100.20.40.60.81w/pMagnitudemodified filtermoving-averageconventionalmodified46 7.3.2 Zero Locations of Linear-Phase FIR Transfer FunctionsFor type 1 and 2 0 n N and N is even/ odd.DSP group 2007 chap7-ed147 7.3.2 Zero Locations of Linear-Phase FIR

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论