【学习课件】第二章流体的P-V-T关系_第1页
【学习课件】第二章流体的P-V-T关系_第2页
【学习课件】第二章流体的P-V-T关系_第3页
【学习课件】第二章流体的P-V-T关系_第4页
【学习课件】第二章流体的P-V-T关系_第5页
已阅读5页,还剩87页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第二章 流体的P-V-T关系2.1 纯物质的P-V-T关系编辑ppt123C固相气相液相密流区一.P-T图1-2线 汽固平衡线(升华线)2-c线 汽液平衡线(汽化线)2-3线 液固平衡线(熔化线)C点临界点,2点三相点PPc,TTc的区域,属汽体PTc的区域,属气体PPc,TTc的区域,两相性质相同TcTPcPPPc,TTc的区域,密流区 具有液体和气体的双重性质,密度同液体,溶解度大;粘度同气体,扩散系数大。AB编辑ppt二.P-V图VPT1T2T3TcT4T5汽液两相区气液汽特性:汽液两相区的比容差随温度和压力的上升而减少,外延至V=0点,可求得Pc,Vc和Tc.在单相区,等温线为光滑的曲

2、线或直线;高于Tc的的等温线光滑,无转折点,低于Tc的的等温线有折点,由三部分组成。临界点处,等温线既是极值点又是拐点C编辑ppt三.P-V-T关系在单相区 f(P,V,T)=0 隐函数 显函数 V=V(P,T) P=P(V,T) T=T(P,V)全微分方程:编辑ppt 容积膨胀系数等温压缩系数当温度和压力变化不大时,流体的容积膨胀系数和等温压缩系数可以看作常数,则有编辑ppt2.2 气体的状态方程对1mol物质 f(P,V,T)=0对nmol物质 f(P,V,T,n)=0 理想气体状态方程(Ideal Gas EOS) PV=RT (1mol)在恒T下 PV=const.Actual Gas

3、 在恒T下 PV=const.? 答案: PV const.编辑ppt300多种EOS编辑ppt一.维里方程(Virial Equation)(1901年,荷兰Leiden大学Onness)由图2-3知,气相区,等温线近似于双曲线,当P时,V 1.方程的提出编辑pptOnness提出: PV=a+bP+cP2+dP3+.令式中 b=aB c=aC d=aD上式:PV=a(1+BP+CP2+DP3+.)式中:a, B, C, D皆是T和物质的函数当p 0时, 真实气体的行为理想气体的行为Ideal Gas(1)分子间作用力小 (2)分子本身体积小编辑ppt由维里方程式,当P0时, PV=a由id

4、eal gas EOS , PV=RT由上述两个方程即可求出维里方程式中的a=RTPV=RT(1+BP+CP2+DP3+) Z= pV/RT=1+BP+CP2+DP3+ 压力形式 Z= pV/RT=1+B/V+C/V2+D/V3+ 体积形式编辑ppt维里系数f(物质,温度)理论基础:统计热力学B、B第二维里系数,它表示对于一定量的真实气体,两个气体分子间作用所引起的真实气体与理想气体的偏差。C、C第三维里系数,它表示对于一定量的真实气体,两个气体分子间作用所引起的真实气体与理想气体的偏差。D、D编辑ppt注意:BB C C D D (近似式)编辑ppt2.两项维里方程维里方程式中,保留前两项,

5、忽略掉第三项之后的所有项,得到: Z=PV/RT=1+BP Z=PV/RT=1+B/V把这个式子代入用压力表示的两项维里方程中,就得到常用的两项维里方程。即:编辑ppt3.应用范围与条件:(1) 用于气相PVT性质计算,对液相不能使用;(2) TTc, P1.5MPa, 用两项维里方程计算,满足工程需要;(3) TTc, 1.5MPa P5MPa, 用三项维里方程计算,满足工程需要;(4) 高压、精确度要求高,可视情况,多取几项 根据状态方程式的形式、结构进行分类可分为两类: 立方型:具有两个常数的EOS 精细型:多常数的EOS编辑ppt二. 立方型(两常数)EOS1. VDW Equatio

6、n (1873)形式:a/V2 分子引力修正项。由于分子相互吸引力存在,分子撞击器壁的力减小,造成压力减小。压力减小的数值与撞击器壁的分子成正比;与吸引其分子数成正比,即与气体比容的平方成反比。b 体积校正项。分子本身占有体积,分子自由活动空间减小由V变成V-b。编辑ppt在临界点处编辑ppt 实际气体的等温线 将范德华方程整理后得到: P(V-b)V2=RTV2-a(V-b) PV3-(bP+RT)V2+aV+ab=0由这个方程可以看出,当温度不变时,是一个关于V的三次方程,其解有三种情况: 三个不等的实根。 三个相等的实根 一个实根,两个虚根 P L D H V编辑pptR-K Equat

7、ion (1949年,Redlich and Kwong)(1) R-K Eq的一般形式: R-K Equation中常数值不同于范德华方程中的a、b值,不能将二者混淆。在范德华方程中,修正项为a/V2,没有考虑温度的影响在R-K方程中,修正项为,考虑了温度的影响。 R-K Equation中常数a、b值是物性常数,具有单位。(2-6)编辑ppt编辑ppt(2)便于计算机应用的形式 式中 A=ap/R2T2.5 B=bp/RT编辑ppt迭代法 先给yesNo编辑ppt(3) R-K Eq的应用范围 适用于气体pVT性质计算 非极性、弱极性物质误差在2左右,对于强极性物质误差达1020。 编辑p

8、pt3. RKS或SRK Eq(1972年,Sove)形式R-K Eq中 af(物性)SRK Eq中 af(物性,T)(2-8)编辑pptR-K Eq经过修改后,应用范围扩宽。SRK Eq:可用于两相PVT性质的计算,对烃类计算,其精确度很高。 关于两常数(立方型)状态方程,除了我们介绍的范德华、RK、SRK Eq以外,还有许多方程,包括我们讲义上的PR Eq和P-T Eq PR Eq 式(2-10) P-T Eq 式(2-12) 编辑ppt(四) 应用举例 1.试差法解题 编辑ppt试差法:假定v值 方程左边 方程右边 判断小v=30 cm3/mol710.2549156.6776大v=50

9、 cm3/mol97.8976125.8908v=40 cm3/mol 172.0770 136.6268 小v=44 cm3/molv=44.0705 131.5139 131.5267 稍大 已接近v=44.0686 131.5284 131.5288由此可计算出v=44.0686 cm3/mol编辑ppt通过作图得出结果 若令 y1=方程左边f1(v) y2=方程右边f2(v) V求YV编辑ppt2.迭代法 :编辑ppt假设:Z(0)=2 h(0)=0.59795 Z(1)=1.9076Z(0)Z(0)=1.9076 h(1)=0.62691 Z(2)=2.0834Z(0)Z(0)=2.

10、0834 h(2)=0.57401 Z(3)=1.7826Z(0)如果按直接赋值迭代不收敛,发散,考虑用Z(0)=1.9538 h(1)=0.61209 Z(2)=1.9898Z(0)=1.9714 h(1)=0.60662 Z(3)=1.957Z(0)=1.9665 h(1)=0.60814 Z(7)=1.9661 编辑ppt编辑ppthZZ(0)h(0)(1)(2)编辑ppt3.注意点 (1)单位要一致,且采用国际单位制;(2)R的取值取决于PVT的单位.0.08205 m3atm/kmolK, latm/molK1.987 cal/molK, kcal/kmolK8314 m3Pa/km

11、olK (J/kmolK )8.314 J/molK (kJ/kmolK) 编辑ppt三. 多常数状态方程 (一).BWR Eq1.方程的形式 P13 式(2-34)式中B0、A0、C0、a、b、c、8个常数运用BWR Eq时,首先要确定式中的8个常数,至少要有8组数据,才能确定出8个常数。2.应用范围(1)可用于气相、液相PVT性质的计算。(2)计算烃类及其混合物的效果好。 编辑ppt(二)M-H. Eq 1.通式(2-32)其中k=5.475M-H. Eq : 55型和88型编辑ppt2. 55型 由上面的通式可见,方程中的常数为: 有9个常数,但只需两组数据就可以得到,一组是临界值,另一

12、组是某一温度下的蒸汽压A(0)AA3AA(0)B(R)BBB(0)BC(0)CCC(0)C(0)编辑ppt 在55型方程的基础上增加了常数,这样就得到了我们讲义P12式(2-33),此式称为81型-方程。 3. 81型4.优缺点 优点:计算精度高,误差:气相,液相:常数易确定,只需两点实测数据(临界点,常压下数据) c:可用于极性气体性质计算:可用于和液相性质的计算 问题:对液相极性物质计算误差大,最大误差达16%参考文献:化工学报, (1). 1981 编辑ppt2.3 对比态原理及其应用 一.气体的对比态原理由物化知:对比参数定义为 TrT/Tc Pr=P/Pc Vr=V/Vc对比状态原理

13、:所有的物质在相同的对比状态下表现出相同的性质。对比状态:就是当流体的对比参数中有两个相同时,这种流体就处于对比状态。编辑ppt例如:H2 和N2这两种流体对于H2 状态点记为1,P1 V1 T1 Tr1 =T1/TcH2 Pr1=P1/PcH2 对于N2 状态点记为2,P2 V2 T2 Tr2 =T2/TcN2 Pr2=P2/PcN2 当Tr1=Tr2 ,Pr1=Pr2 时,此时就称这两种流体处于对比状态,在这一点H2和N2表现出相同的性质。编辑ppt二、 对比状态原理的应用(一)普遍化EOS普遍化EOS,就是用对比参数代入EOS得到的方程式,叫做普遍化EOS如:RK方程: B0.08664

14、*Pr/Tr A/B=4.934/Tr1.5 编辑ppt普遍化EOS表现为两点: 不含有物性常数,以对比参数作为独立变量;可用于任何流体的任一条件下的PTV性质计算。编辑ppt(二)普遍化关系式 两参数普遍化压缩因子图 由物化知,对理想气体方程进行修正,可得到真实气体的PTV关系, 对理想气体: PVRT (1mol) 对真实气体: PV=ZRT (1mol) 由此可以看出,真实气体与理想气体的偏差,集中反映在压缩因子上。 编辑ppt压缩因子定义为:V真ZV理即:在一定P,T下真实气体的比容与相同P,T下理想气体的比容的比值. 编辑ppt当 Z1 V真V理 Z1 V真V理 Z1 V真V理 编辑

15、ppt 两参数普遍化关系式 已定义 f(P,V,T)=0 (23)同理:f(Pr,Vr,Tr)=0 或 Vr=f1(Tr,Pr) (236) 又由 ZPVRT VZRTP在临界点:Vc= ZcRTc/Pc对比体积:Vr=V/Vc=(ZRT/p)/(ZcRTc/Pc)=(Z/Zc)*(Tr/Pr)整理: ZPrVrZc/Tr 得Zf(Pr,Tr,Vr,Zc)由(236)知,Zf2(Tr,Pr,Zc) 编辑ppt大多数物质(约60的临界压缩因子Zc在0.260.29之间一般取Zc=0.27,把临界压缩因子看作常数,这样上式就可写作: z=f3(Tr,Pr) 许多科技工作者以此为依据,作出了大量的实

16、验数据,依此原理作出了两参数压缩因子图。 编辑ppt2.三参数普遍化关系式由于两参数普遍化关系式的限制 在两参数普遍化关系式中引入一个能够灵敏的反映分子间相互作用力的特殊参数 有人提议:(1)用临界压缩因子Zc;(2)用分子的偶极矩来表示. 但效果都不甚太好。 编辑pptJ.S.Pitzer皮查尔提出的偏心因子效果最好 1955年,J.S.Pitzer提出了以偏心因子作为第三因子的关系式 Zf(Tr,Pr,) 编辑ppt()偏心因子(偏心率)在低压下,克克方程式表示为: 式中: P 蒸汽压力; T 蒸汽温度; 汽化热 编辑ppt积分式: 其中a1c , 把饱和蒸汽压Ps和T用对比参数代入 lo

17、gPrs=a-b/Tr 此时相当于直线方程: y=a-bx 编辑pptPitzer发现:(1) 球形分子(非极性,量子)Ar,Kr,Xe做logPrs1/Tr图,其斜率相同,且在Tr=0.7时,logPr s=-1。(2) 作非球形分子的logPrs1/Tr线,皆位于球形分子的下面,随物质的极性增加,偏离程度愈大。 编辑ppt1.01.21.41.61.8-1-2-3logPrs1/Tr12Ar,Kr,Xe非球形分子1非球形分子2编辑ppt定义:以球形分子在Tr0.7时的对比饱和蒸汽压的对数作标准,任意物质在Tr0.7时,对比饱和蒸汽压的对数与其标准的差值,就称为该物质的偏心因子。 数学式:l

18、og(Prs)Tr=0.7-1.00 编辑ppt偏心因子物理意义表现为:其值大小是反映物质分子形状与物质极性大小的量度。 对于球形分子(Ar,Kr,Xe等) 0对于非球形分子 且 0物质的可通过查表或通过定义式计算得到 讲义附录二中给出了许多物质的偏心因子,在运用时大家可查找。 编辑ppt两个非常有用的普遍化关系式一种是以两项维里方程表示的普遍化关系式(简称普维法)一种是以压缩因子的多项式形式表示的普遍化关系式(简称普压法) 编辑ppt(2)普遍化的维里系数法 两项维里方程为 Z1+BPRT (228b) 将对比参数代入维里方程,得到:式中:无因次数群,是T 的函数, 称为普遍化第二维里系数。

19、编辑pptPitzer提出了下面的计算方程式: 编辑ppt(3)普遍化的压缩因子法(普压法)普压法是以多项式表示出来的方法。ZZ(0)Z(1) 2Z(2)一般取两项,既能满足工程需要,亦即:ZZ(0) Z( 1) (238)式中:Z0f1(Tr,Pr) 球形分子的Z值Z1f2(Tr,Pr)与Z1相关联的Z的校正项如果校正项不能满足工程需要,可往后多取几项,实际工程上,一般取两项就足以满足精度要求。编辑pptZ0和Z1的表达式是非常复杂的,一般用图和表来表示。Z0用图(27ab)Z1用图 (28ab) 计算过程: TcPcVcT,PTrPr查图或表Z0Z1式(2-38)ZTPV编辑ppt(4)注

20、意点 应用范围以P18图2-9中的曲线为界 当Tr,Pr的对应点落在曲线上方,用普维法当Tr,Pr的对应点落在曲线下方,用普压法 当求P时,Pr未知 用V判据 Vr2用普维法,直接计算 Vr2用普压法,迭代计算编辑ppt 精度三参数普遍化关系是能够很好的满足工程需要,一般对于非极性和弱极性物质,误差3;强极性物质,误差达510。 编辑ppt3.应用举例P1719 例(2325)计算时注意:当V2时,由T,V得到P。用两项维里方程 编辑ppt书中的例题 要认真的看看 要注意计算思路 计算原则 计算方法 编辑pptEOS irialV-D-WR-kS-R-kB-W-R M-H普遍化关系式法 普遍化

21、两参数普遍化关系式 三参数普遍化关系式 普压法普维法编辑ppt2.4 真实气体混合物的PTV关系 真实气体混合物的非理想性,可看成是由两方面的原因造成的纯气体的非理想性混合作用所引起的非理想性真实气体混合物PTV性质的计算方法与纯气体的计算方法是相同的,也有两种EOS普遍化方法但是由于混合物组分数的增加,使它的计算又具有特殊性。 编辑ppt 对纯组分气体 PVZRT 对混合物气体 PVZmRT 虚拟临界常数法道尔顿定律Z图阿玛格定律Z图三参数普遍化关系式法 常用的方法有:一. 普遍化关系式编辑ppt1.虚拟临界常数法 该法是由W.B.Kay提出,其主题思想是人为地把混合物看作是一种纯物质世界上

22、的纯物质都具有相应的临界点 _客观事实把混合物看作是一种纯物质,混合物的临界常数是通过一些混合规则将混合物中各组分的临界参数联系在一起 _主观上虚拟临界常数,这种方法就称为虚拟临界常数法 编辑pptKay规则: Tpc=y1TC1+y2TC2+=yiTCi Ppc=y1PC1+y2PC2+=yiPCi虚拟对比参数: Tpr=T/Tpc Ppr=P/Ppc以下就可以按纯组分气体PTV性质的计算方法进行计算。 编辑ppt具体计算过程是: 编辑ppt2.道尔顿定律Z图 (1)要点: P=Pi=ZmnRT/v Pi=ZiniRT/v Zm=yiZ式中:Pi组分i在混合物T,V的压力,纯组分i的压力Zi

23、组分i的压缩因子,由Pi,T混决定yi 组分i的mol分率,yi=ni/n编辑ppt道尔顿定律关键在于组分压缩因子的计算,而组分压缩因子的计算关键又在于P的计算 注意点: Zi是由Tri,Pri查两参数压缩因子图得来的。 Pi是纯组分的压力,不能称为分压。 对理想气体混合物 分压力 对真实气体混合物 纯组分的分压力 Pi的计算要用试差法或迭代法 编辑ppt不管是求PTV性质中的那个参数,纯组分i的压力Pi都是未知的,因而必须采用特殊的数学手段进行求取. 编辑ppt根据混先假设Pi T查算 ZiZmyiZi ZmV=ZmnRT/P VPi=ZiniRT/V Pi 1Pi1 Pi0计算思路编辑pp

24、t3.阿玛格定律Z图 三要点: V=Vi Vi=ZiniRT/PZm=yiZi注意以下两点:Zi是由Tri,Pri查两参数压缩因子图得到的。与道尔顿定律的区别,主要表现在Zi的求取不同。 编辑pptZi的求取道尔顿定律:Zi是由Pi,T混决定的,一般要试差或迭代,可用于低于5Mpa以下的体系。阿玛格定律:Zi是由P混,T混决定的,不需要试差或迭代,可用于高压体系30MPa以上。 编辑ppt4.三参数普遍化关系式法 Pitzer提出的三参数普遍化关系式 Zf(Tr,Pr,)(1)普压法 纯组分气体计算式 Z=Z0+Z1 (238)对于混合物 Zm=Z0+mZ1 式中: Z0,Z1,皆是混合物的对

25、应参数值 Z0f1(Tr,Pr),Z1=f2(Tr,Pr)仍是对比参数的函数,但对比参数是虚拟对比参数,因而要首先计算虚拟临界值。 编辑pptTpr=T/TpcPpr=P/PpcTpcyiTcim=yiiPpc=yiPci求虚拟对比参数计算出虚拟对比参数后,即可按纯气体的计算方法查图计算,但要注意用这种方法的条件是虚拟对比参数(Tr,Pr)点应落在图29曲线的下方。编辑ppt二.EOS法 1.维里方程 (1)混合物的维里方程与组成间的关系 对单组分气体 ZBP/RT (2-28b)对气体混合物ZmBmPRT式中:Zm气体混合物的压缩因子Bm混合物的第二维里系数,表示所有可能的双分子效应的加和。

26、 编辑ppt混合物的第二维里系数即包含有相同分子间的相互作用,又包含有异分子之间的相互作用。统计热力学混合物中各组份的组成与维里系数之间存在有这样的对应关系 式中:,组分,yi, yj 组分的摩尔分率Bij 第二维里系数,当时,纯组分的第二维里系数;当时,交叉维里系数,实质上,BijBji。 编辑ppt如:对于二元混合物,混合物的第二维里系数 Bm=y1y1B11+y1y2B12+y2y1B21+y2y2B22将所有可能双分子间的相互作用加起来,并注意到B12B21Bm=y12B11+2y1y2B12+y22B22 (251)式中:B11,B22纯组分维里系数 (文献或手册可查)B12,B21交叉维里系数 (文献或手册没有,要计算) 编辑ppt( 2)交叉维里系数的计算对纯组分气体 对于混合物气体当ij时,表明是纯组分的维里系数,可查手册,文献或计算。当时ij,表明是交叉维里系数,利用此式计算时,涉及到Pcij

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论